LEADER 05619nam 2200721 a 450 001 996217138503316 005 20210209153749.0 010 $a1-280-84763-8 010 $a9786610847631 010 $a0-470-61228-2 010 $a0-470-39449-8 010 $a1-84704-560-X 035 $a(CKB)1000000000335563 035 $a(EBL)700728 035 $a(OCoLC)769341519 035 $a(SSID)ssj0000204031 035 $a(PQKBManifestationID)11172492 035 $a(PQKBTitleCode)TC0000204031 035 $a(PQKBWorkID)10176176 035 $a(PQKB)10942675 035 $a(MiAaPQ)EBC700728 035 $a(MiAaPQ)EBC261981 035 $a(Au-PeEL)EBL261981 035 $a(OCoLC)936813926 035 $a(PPN)188832394 035 $a(EXLCZ)991000000000335563 100 $a20060929d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aModeling, performance analysis and control of robot manipulators$b[electronic resource] /$fedited by Etienne Dombre, Wisama Khalil 210 $aLondon ;$aNewport Beach, CA $cISTE$dc2007 215 $a1 online resource (414 p.) 225 1 $aControl systems, robotics and manufacturing series 300 $aDescription based upon print version of record. 311 $a1-905209-10-X 320 $aIncludes bibliographical references and index. 327 $aModeling, Performance Analysis and Control of Robot Manipulators; Table of Contents; Chapter 1. Modeling and Identification of Serial Robots; 1.1. Introduction; 1.2. Geometric modeling; 1.2.1. Geometric description; 1.2.2. Direct geometric model; 1.2.3. Inverse geometric model; 1.2.3.1. Stating the problem; 1.2.3.2. Principle of Paul's method; 1.3. Kinematic modeling; 1.3.1. Direct kinematic model; 1.3.1.1 Calculation of the Jacobian matrix by derivation of the DGM; 1.3.1.2. Kinematic Jacobian matrix; 1.3.1.3. Decomposition of the kinematic Jacobian matrix into three matrices 327 $a1.3.1.4. Dimension of the operational space of a robot1.3.2. Inverse kinematic model; 1.3.2.1. General form of the kinematic model; 1.3.2.2. Inverse kinematic model for the regular case; 1.3.2.3. Solution at the proximity of singular positions; 1.3.2.4. Inverse kinematic model of redundant robots; 1.4. Calibration of geometric parameters; 1.4.1. Introduction; 1.4.2. Geometric parameters; 1.4.2.1. Geometric parameters of the robot; 1.4.2.2. Parameters of the robot's location; 1.4.2.3. Geometric parameters of the end-effector; 1.4.3. Generalized differential model of a robot 327 $a1.4.4. Principle of geometric calibration1.4.4.1. General form of the calibration model; 1.4.4.2. Identifying the geometric parameters; 1.4.4.3. Solving the identification equations; 1.4.5. Calibration methods of geometric parameters; 1.4.5.1. Calibration model by measuring the end-effector location; 1.4.5.2. Autonomous calibration models; 1.4.6. Correction of geometric parameters; 1.5. Dynamic modeling; 1.5.1. Lagrange formalism; 1.5.1.1. General form of dynamic equations; 1.5.1.2. Calculation of energy; 1.5.1.3. Properties of the dynamic mode; 1.5.1.4. Taking into consideration the friction 327 $a1.5.1.5. Taking into account the inertia of the actuator's rotor1.5.1.6. Taking into consideration the forces and moments exerted by the end-effector on its environment; 1.5.2. Newton-Euler formalism; 1.5.2.1. Newton-Euler equations linear in the inertial parameters; 1.5.2.2. Practical form of Newton-Euler equations; 1.5.3. Determining the base inertial parameters; 1.6. Identification of dynamic parameters; 1.6.1. Introduction; 1.6.2. Identification principle of dynamic parameters; 1.6.2.1. Solving method; 1.6.2.2. Identifiable parameters; 1.6.2.3. Choice of identification trajectories 327 $a1.6.2.4. Evaluation of joint coordinates1.6.2.5. Evaluation of joint torques; 1.6.3. Identification model using the dynamic model; 1.6.4. Sequential formulation of the dynamic model; 1.6.5. Practical considerations; 1.7. Conclusion; 1.8. Bibliography; Chapter 2. Modeling of Parallel Robots; 2.1. Introduction; 2.1.1. Characteristics of classic robots; 2.1.2. Other types of robot structure; 2.1.3. General advantages and disadvantages; 2.1.4. Present day uses; 2.1.4.1. Simulators and space applications; 2.1.4.2. Industrial applications; 2.1.4.3. Medical applications; 2.1.4.4. Precise positioning 327 $a2.2. Machine types 330 $aThis book presents the most recent research results on modeling and control of robot manipulators.Chapter 1 gives unified tools to derive direct and inverse geometric, kinematic and dynamic models of serial robots and addresses the issue of identification of the geometric and dynamic parameters of these models.Chapter 2 describes the main features of serial robots, the different architectures and the methods used to obtain direct and inverse geometric, kinematic and dynamic models, paying special attention to singularity analysis.Chapter 3 introduces global 410 0$aControl systems, robotics and manufacturing series. 606 $aRobotics 606 $aManipulators (Mechanism) 615 0$aRobotics. 615 0$aManipulators (Mechanism) 676 $a629.8/933 676 $a629.892 676 $a629.8933 701 $aDombre$b E$g(Etienne)$0893784 701 $aKhalil$b W$g(Wisama)$0893783 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996217138503316 996 $aModeling, performance analysis and control of robot manipulators$92279468 997 $aUNISA LEADER 01580nam a2200373 i 4500 001 991004172889707536 005 20020509155356.0 008 990921s1986 ||| ||| | ger 020 $a3533037452 020 $a3533037479 035 $ab11280141-39ule_inst 035 $aPARLA197322$9ExL 040 $aDip.to Filosofia$bita 041 0 $agerlat 100 1 $aNicholas, of Cusa, Cardinal$0538385 245 10$aProclus Latinus :$bdie Exzerpte und Randnoten des Nikolaus von Kues zu den lateinischen Übersetzungen der Proclus-Schriften 260 $aHeidelberg :$bWinter,$c1986 300 $a2 v. ;$c25 cm. 490 0 $aCusanus-Texte 490 0 $aAbhandlungen der Heidelberger Akademie der Wissenschaften, Philosophisch-Historische Klasse, ;$v2. 490 0 $aMarginalien ;$v3. 500 $aIndice: Bd. 1.: Theologia Platonis : Elementio theologica / hrsg. Hans Gerhard Senger ; Bd. 2.: Expositio in Parmenidem Platonis / hrsg. Karl Bormann 650 4$aNicolaus : Cusanus 650 4$aProclus, ca. 410-485. Elements of theology 650 4$aProclus, ca. 410-485. In Parmenidem 700 1 $aBormann, Karl 700 1 $aSenger, Hans Gerhard 907 $a.b11280141$b23-02-17$c01-07-02 912 $a991004172889707536 945 $aLE005$ct. 1$g1$i2005000057526$lle005$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11444897$z01-07-02 945 $aLE005$ct. 2$g1$i2005000057533$lle005$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11444903$z01-07-02 996 $aProclus Latinus$9865328 997 $aUNISALENTO 998 $ale005$b01-01-99$cm$da $e-$fger$gde $h0$i2