LEADER 00953nam a22002651i 4500 001 991004089049707536 005 20031003064036.0 008 031111s1991 uik|||||||||||||||||eng 020 $a0140138323 035 $ab12518669-39ule_inst 035 $aARCHE-055193$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a809 100 1 $aBradbury, Malcolm$0163419 245 10$aModernism 1890-1930 /$cedited by Malcolm Bradbury and James McFarlane 260 $aLondon :$bPenguin Books,$c1991 300 $a687 p. ;$c20 cm 650 4$aModernismo (Letteratura)$zEuropa 700 1 $aMcFarlane, James 907 $a.b12518669$b02-04-14$c13-11-03 912 $a991004089049707536 945 $aLE012 809 BRA$g1$i2012000191341$lle012$o-$pE0.00$q-$rl$s- $t0$u1$v1$w1$x0$y.i12959091$z13-11-03 996 $aModernism 1890-1930$9183964 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$feng$guik$h0$i1 LEADER 02169oam 2200589 450 001 9910713603003321 005 20200717134301.0 035 $a(CKB)5470000002503649 035 $a(OCoLC)974648957$z(OCoLC)622216268$z(OCoLC)667865772$z(OCoLC)680548576 035 $a(OCoLC)995470000002503649 035 $a(EXLCZ)995470000002503649 100 $a20170306d1996 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWater-quality assessment of the White River Basin, Indiana $eanalysis of selected information on nutrients, 1980-92 /$fby Jeffrey D. Martin [and three others] 210 1$aIndianapolis, Indiana :$cU.S. Geological Survey,$d1996. 215 $a1 online resource (viii, 91 pages) $cillustrations, maps 225 1 $aWater-resources investigations report ;$v96-4192 300 $a"National Water-Quality Assessment Program." 320 $aIncludes bibliographical references (pages 86-91). 517 $aWater-quality assessment of the White River Basin, Indiana 606 $aGroundwater$xQuality$zIndiana$zWhite River Watershed 606 $aNutrient pollution of water$zIndiana$zWhite River Watershed 606 $aWater quality$zIndiana$zWhite River Watershed 606 $aGroundwater$xQuality$2fast 606 $aNutrient pollution of water$2fast 606 $aWater quality$2fast 607 $aIndiana$zWhite River Watershed$2fast 615 0$aGroundwater$xQuality 615 0$aNutrient pollution of water 615 0$aWater quality 615 7$aGroundwater$xQuality. 615 7$aNutrient pollution of water. 615 7$aWater quality. 700 $aMartin$b Jeffrey D.$01401696 712 02$aGeological Survey (U.S.), 712 02$aNational Water-Quality Assessment Program (U.S.) 801 0$bCOP 801 1$bCOP 801 2$bOCLCO 801 2$bOCLCE 801 2$bOCLCF 801 2$bOCLCA 801 2$bOCL 801 2$bGPO 906 $aBOOK 912 $a9910713603003321 996 $aWater-quality assessment of the White River Basin, Indiana$93493746 997 $aUNINA LEADER 03017nam0 22005773i 450 001 VAN00279176 005 20241017114558.466 017 70$2N$a9789811920080 100 $a20240704d2023 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aComputational Finance with R$fRituparna Sen, Sourish Das 210 $aSingapore$cSpringer$cIndian Statistical Institute$d2023 215 $axiii, 353 p.$cill.$d24 cm 410 1$1001VAN00125144$12001 $aIndian Statistical Institute Series$1210 $aSingapore [etc.]$cSpringer$d2018- 606 $a62-XX$xStatistics [MSC 2020]$3VANC022998$2MF 606 $a62D05$xSampling theory, sample surveys [MSC 2020]$3VANC037080$2MF 606 $a62F15$xBayesian inference [MSC 2020]$3VANC024528$2MF 606 $a62F40$xBootstrap, jackknife and other resampling methods [MSC 2020]$3VANC031098$2MF 606 $a62P05$xApplications of statistics to actuarial sciences and financial mathematics [MSC 2020]$3VANC030682$2MF 606 $a65-XX$xNumerical analysis [MSC 2020]$3VANC019772$2MF 606 $a65C05$xMonte Carlo methods [MSC 2020]$3VANC020429$2MF 606 $a65M06$xFinite difference methods for initial value and initial-boundary value problems involving PDEs [MSC 2020]$3VANC023047$2MF 606 $a65R20$xNumerical methods for integral equations [MSC 2020]$3VANC019874$2MF 606 $a90C05$xLinear programming [MSC 2020]$3VANC021350$2MF 606 $a91-XX$xGame theory, economics, finance, and other social and behavioral sciences [MSC 2020]$3VANC025601$2MF 606 $a91G10$xPortfolio theory [MSC 2020]$3VANC031365$2MF 606 $a91G20$xDerivative securities (option pricing, hedging, etc.) [MSC 2020]$3VANC031011$2MF 606 $a91G60$xNumerical methods (including Monte Carlo methods) [MSC 2020]$3VANC033553$2MF 610 $aBack-test financial models$9KW:K 610 $aData science in finance$9KW:K 610 $aFinancial Econometrics$9KW:K 610 $aHigh-frequency data$9KW:K 610 $aMachine learning in finance$9KW:K 610 $aQuantitative Finance$9KW:K 610 $aSimulate Brownian motion$9KW:K 610 $aStylized facts of stock markets$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aSen$bRituparna$3VANV231724$01370247 701 1$aDas$bSourish$3VANV231725$01765857 712 $aIndian Statistical Institute$3VANV231714$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-981-19-2008-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00279176 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 9307 $e08eMF9307 20240708 996 $aComputational Finance with R$94208977 997 $aUNICAMPANIA