LEADER 01298nam a2200265 a 4500 001 991004053369707536 008 035 $ab14429706-39ule_inst 040 $aDip.to di Storia, Societą e Studi sull'Uomo$bita 082 0 $a340.071145121 100 1 $aBalani, Donatella$0211819 245 10$aToghe di Stato :$bla facoltą giuridica dell'Universitą di Torino e le professioni nel Piemonte del Settecento /$cDonatella Balani 260 $aTorino :$bDeputazione subalpina di storia patria,$c1996 300 $aXII, 334 p. ;$c23 cm 490 0 $aMiscellanea di storia italiana. Serie 5, Studi e fonti per la storia della Universitą di Torino ;$v6 500 $aIn testa al front.: Deputazione subalpina di storia patria; Universitą degli studi di Torino. 650 $aMagistrati$xProfessione$xPiemonte$xSec. 18. 650 4$aTorino$xUniversitą$xFacoltą di giurisprudenza$xSec. 18. 650 $aAvvocati$xProfessione$xPiemonte$xSec. 18. 907 $a.b14429706$b25-02-22$c01-02-22 912 $a991004053369707536 945 $aLE023 Fondo Brambilla 1121$g1$i2023000211953$lle023$o-$pE19.95$q-$rn$so $t0$u0$v0$w0$x0$y.i15993747$z01-02-22 996 $aToghe di Stato$92780101 997 $aUNISALENTO 998 $ale023$b01-02-22$cm$da $e-$fita$git $h0$i0 LEADER 03686nam 2200709 450 001 9910812425703321 005 20170816143327.0 010 $a1-4704-0421-4 035 $a(CKB)3360000000465004 035 $a(EBL)3114212 035 $a(SSID)ssj0000973324 035 $a(PQKBManifestationID)11553110 035 $a(PQKBTitleCode)TC0000973324 035 $a(PQKBWorkID)10959568 035 $a(PQKB)11302693 035 $a(MiAaPQ)EBC3114212 035 $a(RPAM)13709972 035 $a(PPN)195417089 035 $a(EXLCZ)993360000000465004 100 $a20040903h20052005 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aConformal and harmonic measures on laminations associated with rational maps /$fVadim A. Kaimanovich, Mikhail Lyubich 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2005. 210 4$d©2005 215 $a1 online resource (134 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 820 300 $a"Volume 173, number 820 (end of volume)." 311 $a0-8218-3615-3 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Introduction""; ""Chapter 1. Affine and hyperbolic laminations""; ""1.1. Afflne plane and hyperbolic space""; ""1.2. The notion of lamination""; ""1.3. Cohomology of an affine lamination""; ""Chapter 2. Measures and currents on laminations""; ""2.1. Measures on general laminations""; ""2.2. Measures and streams on affine and hyperbolic laminations""; ""2.3. Conformal streams, harmonic measures and harmonic functions""; ""2.4. Measures and streams on quotient laminations""; ""Chapter 3. Laminations associated with rational maps""; ""3.1. Construction of the affine lamination"" 327 $a""3.2. The Busemann and basic cocycles of a rational map""""3.3. An example of a special section""; ""3.4. Dual basic cocycle""; ""3.5. Euclidean laminations""; ""Chapter 4. Measures on laminations associated with rational maps""; ""4.1. The balanced measures""; ""4.2. Equidistribution of leaves""; ""4.3. Critical exponent""; ""4.4. Transverse conformal stream and I?»-harmonic measure""; ""4.5. Leafwise conformal streams""; ""4.6. Sullivan's Riemann surface laminations""; ""4.7. Problems""; ""Appendix A. Laminations associated with Kleinian groups"" 327 $a""A.1. Foliations associated with the hyperbolic space""""A.2. Laminations associated with Kleinian groups""; ""A.3. Metrics on the Riemann sphere""; ""A.4. Conformal streams and invariant measures of the geodesic flow""; ""A.5. New lines in the dictionary""; ""A.6. An example of a non-Euclidean affine foliation""; ""List of notations""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 820. 606 $aConformal mapping 606 $aGeometry, Hyperbolic 606 $aMeasure theory 606 $aDifferential topology 606 $aComplex manifolds 606 $aHyperbolic spaces 606 $aKleinian groups 615 0$aConformal mapping. 615 0$aGeometry, Hyperbolic. 615 0$aMeasure theory. 615 0$aDifferential topology. 615 0$aComplex manifolds. 615 0$aHyperbolic spaces. 615 0$aKleinian groups. 676 $a510 s 676 $a515/.9 700 $aKaimanovich$b Vadim A.$0898963 702 $aLyubich$b Mikhail$f1959- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812425703321 996 $aConformal and harmonic measures on laminations associated with rational maps$93971572 997 $aUNINA