LEADER 00829nam a22002291i 4500 001 991004046049707536 005 20040714141723.0 008 040802s1933 fr |||||||||||||||||fre 035 $ab13164144-39ule_inst 035 $aARCHE-111675$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a843.912 100 1 $aMargueritte, Victor$0466899 245 12$aL'or :$broman /$cVictor Margueritte 260 $a[Paris] :$bE. Flammarion,$cc1933 300 $a378 p. ;$c19 cm 907 $a.b13164144$b02-04-14$c05-08-04 912 $a991004046049707536 945 $aLE002 Fondo Giudici Q 546$g1$iLE002G-16041$lle002$nC. 1$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13803487$z05-08-04 996 $aOr$9312037 997 $aUNISALENTO 998 $ale002$b05-08-04$cm$da $e-$ffre$gfr $h2$i1 LEADER 03817nam 22005655 450 001 9910639884803321 005 20230515101321.0 010 $a9783031238178$b(electronic bk.) 010 $z9783031238161 024 7 $a10.1007/978-3-031-23817-8 035 $a(MiAaPQ)EBC7165631 035 $a(Au-PeEL)EBL7165631 035 $a(CKB)25913865400041 035 $a(DE-He213)978-3-031-23817-8 035 $a(PPN)267817436 035 $a(EXLCZ)9925913865400041 100 $a20221230d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Quantum Groups /$fby Teo Banica 205 $a1st ed. 2022. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2022. 215 $a1 online resource (428 pages) 311 08$aPrint version: Banica, Teo Introduction to Quantum Groups Cham : Springer,c2023 9783031238161 320 $aIncludes bibliographical references and index. 327 $aPart I. Quantum groups -- Chapter 1. Quantum spaces -- Chapter 2. Quantum groups -- Chapter 3. Representation theory -- Chapter 4. Tannakian duality -- Part II. Quantum rotations -- Chapter 5. Free rotations -- Chapter 6. Unitary groups -- Chapter 7. Easiness, twisting -- Chapter 8. Probabilistic aspects -- Part III. Quantum permutations -- Chapter 9. Quantum permutations -- Chapter 10. Quantum reflections -- Chapter 11. Classification results -- Chapter 12. The standard cube -- Part IV. Advanced topics -- Chapter 13. Toral subgroups -- Chapter 14. Amenability, growth -- Chapter 15. Homogeneous spaces -- Chapter 16. Modelling questions -- Bibliography -- Index. 330 $aThis book introduces the reader to quantum groups, focusing on the simplest ones, namely the closed subgroups of the free unitary group. Although such quantum groups are quite easy to understand mathematically, interesting examples abound, including all classical Lie groups, their free versions, half-liberations, other intermediate liberations, anticommutation twists, the duals of finitely generated discrete groups, quantum permutation groups, quantum reflection groups, quantum symmetry groups of finite graphs, and more. The book is written in textbook style, with its contents roughly covering a one-year graduate course. Besides exercises, the author has included many remarks, comments and pieces of advice with the lone reader in mind. The prerequisites are basic algebra, analysis and probability, and a certain familiarity with complex analysis and measure theory. Organized in four parts, the book begins with the foundations of the theory, due to Woronowicz, comprising axioms, Haar measure, Peter?Weyl theory, Tannakian duality and basic Brauer theorems. The core of the book, its second and third parts, focus on the main examples, first in the continuous case, and then in the discrete case. The fourth and last part is an introduction to selected research topics, such as toral subgroups, homogeneous spaces and matrix models. Introduction to Quantum Groups offers a compelling introduction to quantum groups, from the simplest examples to research level topics. 606 $aMathematics 606 $aOperator theory 606 $aMathematics 606 $aOperator Theory 606 $aGrups quàntics$2thub 608 $aLlibres electrònics$2thub 615 0$aMathematics. 615 0$aOperator theory. 615 14$aMathematics. 615 24$aOperator Theory. 615 7$aGrups quàntics 676 $a512.55 676 $a530.143 700 $aBanica$b Teo$01274070 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910639884803321 996 $aIntroduction to Quantum Groups$93002287 997 $aUNINA