LEADER 00970nam a22002651i 4500 001 991004004569707536 005 20040710072525.0 008 040802s1992 it |||||||||||||||||ita 035 $ab13158545-39ule_inst 035 $aARCHE-111115$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a901 245 00$aLettura/2 /$ca cura di Paolo Bagni ; con la collaborazione di Fernando Bollino ed Emilio Mattioli 260 $aBologna :$bCLUEB,$c1992 300 $a1 v. ;$c19 cm 440 0$aStudi di estetica ;$v5 700 1 $aBagni, Paolo 700 1 $aBollino, Fernando 700 1 $aMattioli, Emilio 907 $a.b13158545$b02-04-14$c05-08-04 912 $a991004004569707536 945 $aLE002 SP 100 S.III/005$g1$i2002000359179$lle002$nC. 1$o-$pE0.00$q-$rl$so $t0$u0$v0$w0$x0$y.i1379744x$z05-08-04 996 $aLettura$9151487 997 $aUNISALENTO 998 $ale002$b05-08-04$cm$da $e-$fita$git $h0$i1 LEADER 04651nam 22005893 450 001 9910877813003321 005 20231014060240.0 010 $a9781119137276 010 $a1119137276 010 $a9781119137290 010 $a1119137292 010 $a9781119137252 010 $a111913725X 035 $a(CKB)4330000000008831 035 $a(MiAaPQ)EBC30783605 035 $a(Au-PeEL)EBL30783605 035 $a(OCoLC)1402816311 035 $a(Perlego)4260194 035 $a(EXLCZ)994330000000008831 100 $a20231014d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSource Separation in Physical-Chemical Sensing 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$d©2024. 215 $a1 online resource (417 pages) 225 1 $aIEEE Press Series 311 08$a9781119137221 311 08$a1119137225 327 $aIntro -- Table of Contents -- Title Page -- Copyright -- About the Editors -- List of Contributors -- Foreword -- Preface -- Notation -- 1 Overview of Source Separation -- 1.1 Introduction -- 1.2 The Problem of Source Separation -- 1.3 Statistical Methods for Source Separation -- 1.4 Source Separation Problems in Physical-Chemical Sensing -- 1.5 Source Separation Methods for Chemical-Physical Sensing -- 1.6 Organization of the Book -- References -- Notes -- 2 Optimization -- 2.1 Introduction to Optimization Problems -- 2.2 Majorization-Minimization Approaches -- 2.3 Primal?Dual Methods -- 2.4 Application to NMR Signal Restoration -- 2.5 Conclusion -- References -- Notes -- 3 Non?negative Matrix Factorization -- 3.1 Introduction -- 3.2 Geometrical Interpretation of NMF and the Non?negative Rank -- 3.3 Uniqueness and Admissible Solutions of NMF -- 3.4 Non?negative Matrix Factorization Algorithms -- 3.5 Applications of NMF in Chemical Sensing. Two Examples of Reducing Admissible Solutions -- 3.6 Conclusions -- References -- 4 Bayesian Source Separation -- 4.1 Introduction -- 4.2 Overview of Bayesian Source Separation -- 4.3 Statistical Models for the Separation in the Linear Mixing -- 4.4 Statistical Models and Separation Algorithms for Nonlinear Mixtures -- 4.5 Some Practical Issues on Algorithm Implementation -- 4.6 Applications to Case Studies in Chemical Sensing -- 4.7 Conclusion -- Appendix 4.AImplementation of Function postsourcesrnd via Metropolis-Hasting Algorithm -- References -- Notes -- 5 Geometrical Methods - Illustration with Hyperspectral Unmixing -- 5.1 Introduction -- 5.2 Hyperspectral Sensing -- 5.3 Hyperspectral Mixing Models -- 5.4 Linear HU Problem Formulation -- 5.5 Dictionary?Based Semiblind HU -- 5.6 Minimum Volume Simplex Estimation -- 5.7 Applications -- 5.8 Conclusions -- References -- Notes. 327 $a6 Tensor Decompositions: Principles and Application to Food Sciences -- 6.1 Introduction -- 6.2 Tensor Decompositions -- 6.3 Constraints in Decompositions -- 6.4 Coupled Decompositions -- 6.5 Algorithms -- 6.6 Applications -- References -- Notes -- Index -- End User License Agreement. 330 $a"With the advent of more affordable, higher resolution or innovative data acquisition techniques, chemical analysis has been using progressively advanced signal and image processing tools. Indeed, both specialities (analytical chemistry and signal processing) share similar values of best practice in carrying out identifications and comprehensive characterizations, be they of chemical samples or of numerical data. Signal and image processing, for instance, often breaks down data into atoms, molecules, with specific decompositions and priors, as common in chemistry. Many problems in chemical engineering can be addressed with classical or advanced methods of signal and image processing, through topics such as chemical analysis leading to PARAFAC/tensor methods, hyper spectral imaging, ion-sensitive sensors, artificial noise, chromatography, mass spectrometry, TEP imaging, etc."--$cProvided by publisher. 410 0$aIEEE Press Series 606 $aChemical detectors 606 $aBlind source separation 615 0$aChemical detectors. 615 0$aBlind source separation. 676 $a681.25 700 $aJutten$b Christian$01751311 701 $aDuarte$b Leonardo Tomazeli$01751312 701 $aMoussaoui$b Sai?d$01751313 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910877813003321 996 $aSource Separation in Physical-Chemical Sensing$94186210 997 $aUNINA