LEADER 01877cam0-22006131i-450 001 990001317450403321 005 20190412130911.0 035 $a000131745 035 $aFED01000131745 035 $a(Aleph)000131745FED01 035 $a000131745 100 $a20001205d1980----km-y0itay50------ba 101 1 $aita$ceng 102 $aIT 105 $aa-------001yy 200 1 $aProgrammare in Fortran$fS. Lipschutz, A. Poe$gcon una introduzione al Fortran strutturato 210 $aMilano$cEtas Libri$d1980 215 $a314 p.$cill.$d27 cm 225 1 $aCollana Schaum$v45 300 $a375 Problemi risolti 454 0$12001$aProgramming with Fortran$922310 610 0 $aLinguaggi di programmazione$aFortran 77 610 0 $aTeoria della programmazione e utilizzazione dei computers 610 0 $aSoftware 610 0 $aElaboratori elettronici$aProgrammazione$aSistema Fortran$aEsercizi 610 0 $aElaboratori elettronici$aProgrammazione$aLinguaggio Fortran 676 $a005.13 676 $a510.78 676 $a005.133 700 1$aLipschutz,$bSeymour$01221 701 1$aPoe,$bArthur T.$01222 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001317450403321 952 $aCOLLEZ. 888 (45)$b23211$fFSPBC 952 $aA / LIP 1$b2045$fBFS 952 $aA / LIP 1BIS$b2352$fBFS 952 $aSCHAUM-45-(A$b10516$fMA1 952 $aSCHAUM-45-(B$b10517$fMA1 952 $aS.8B-050$b14476$fFI1 952 $aS.8B-051$b14448$fFI1 952 $aC-10-(45$b8474$fMA1 952 $aSCHAUM-45-(C$b25569$fMA1 952 $a02 54 C 17$b4893$fFINBN 952 $a13 F 77 03$b32282$fFINBC 952 $a13 F 77 18$b32281$fFINBC 959 $aFINBN 959 $aMA1 959 $aFI1 959 $aFSPBC 959 $aBFS 959 $aFINBC 996 $aProgramming with Fortran$922310 997 $aUNINA LEADER 00914nam a2200253 a 4500 001 991003900459707536 008 020 $a9788899684297 035 $ab1440607x-39ule_inst 040 $aDip.to di Storia, Società e Studi sull'Uomo$bita 082 0 $a618.45 100 1 $aOdent, Michel$0482949 245 13$aLa nascita e l'evoluzione dell'Homo sapiens /$cMichel Odent ; traduzione di Clara Scropetta 260 $aRoma :$bTlon,$c2016 300 $a223 pp. ;$c19 cm 490 0 $aLunari 650 4$aParto 700 1 $aScropetta, Clara 907 $a.b1440607x$b09-12-20$c23-11-20 912 $a991003900459707536 945 $aLE023 618.45 ODE 1 1$g1$i2023000188699$lle023$op$pE13.90$q-$rl$s- $t0$u0$v0$w0$x0$y.i15943148$z03-12-20 996 $aNascita e l'evoluzione dell'Homo sapiens$91769573 997 $aUNISALENTO 998 $ale023$b23-11-20$cm$da $e-$fita$git $h3$i0 LEADER 05163nam 2200865z- 450 001 9910557551803321 005 20220111 035 $a(CKB)5400000000044088 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76706 035 $a(oapen)doab76706 035 $a(EXLCZ)995400000000044088 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNew developments in Functional and Fractional Differential Equations and in Lie Symmetry 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (155 p.) 311 08$a3-0365-1158-X 311 08$a3-0365-1159-8 330 $aDelay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker-Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker-Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection-Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis. 606 $aMathematics & science$2bicssc 606 $aResearch & information: general$2bicssc 610 $aadditive noise 610 $aapproximate conservation laws 610 $aapproximate nonlinear self-adjointness 610 $aapproximation 610 $aasymptotic equivalence 610 $aCauchy matrix 610 $achebyshev polynomials of sixth kind 610 $aconservation laws 610 $aCrank-Nicolson scheme 610 $adelay 610 $adelay differential equation 610 $adeviating argument 610 $adifferential equations 610 $adistributed control 610 $aeigenvalue 610 $aerror estimate 610 $aexistence 610 $aexponential stability 610 $afractional calculus 610 $afractional difference equations 610 $afractional Jaulent-Miodek (JM) system 610 $afractional logistic function method 610 $aimpulses 610 $aintegro-differential systems 610 $aLane-Emden-Klein-Gordon-Fock system with central symmetry 610 $alie point symmetry analysis 610 $aNoether symmetries 610 $anon-monotone argument 610 $anon-monotone delays 610 $aordinary differential equation 610 $aoscillation 610 $aperturbed fractional differential equations 610 $aShifted Gru?nwald-Letnikov approximation 610 $aslowly varying function 610 $aspace fractional convection-diffusion model 610 $astability analysis 610 $astochastic heat equation 610 $asymmetry analysis 610 $avariable coefficients 610 $avariable delay 615 7$aMathematics & science 615 7$aResearch & information: general 700 $aStavroulakis$b Ioannis$4edt$01323475 702 $aJafari$b H$4edt 702 $aStavroulakis$b Ioannis$4oth 702 $aJafari$b H$4oth 906 $aBOOK 912 $a9910557551803321 996 $aNew developments in Functional and Fractional Differential Equations and in Lie Symmetry$93035598 997 $aUNINA