LEADER 01014nam0 22002531i 450 001 SUN0050087 005 20060824120000.0 010 $a88-85897-51-7 100 $a20060824d1996 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆLa ‰casa di Urania$eesperienze didattiche delle cattedre di Museologia scientifica e Comunicazione multimediale$fa cura di Wilma Di Palma 210 $aRoma$cArgos$dc1996 215 $a73 p.$cill.$d24 cm. 620 $dRoma$3SUNL000360 702 1$aDi Palma$b, Wilma$3SUNV039404 712 $aArgos$3SUNV001541$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0050087 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07 CONS Ha 2310 $e07 DP 1471 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$bIT-CE0103$gDP$h1471$kCONS Ha 2310$oc$qa 996 $aCasa di Urania$9347531 997 $aUNICAMPANIA LEADER 02224nam0 2200373 i 450 001 SUN0029908 005 20180531010001.167 010 $a978-05-213-3922-3$d0.00 100 $a20041209d1988 |0engc50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aTriangulated categories in the representation theory of finite dimensional algebras$fDieter Happel 210 $aCambridge$cCambridge university$d1988 215 $aIX, 207 p.$d24 cm. 410 1$1001SUN0029528$12001 $a*London Mathematical Society lecture notes series$v119$1210 $aCambridge$cCambridge university. 606 $a16-XX$xAssociative rings and algebras [MSC 2020]$2MF$3SUNC019734 606 $a18-XX$xCategory theory; homological algebra [MSC 2020]$2MF$3SUNC019745 606 $a16B50$xCategory-theoretic methods and results in associative algebras [MSC 2020]$2MF$3SUNC021328 606 $a16Exx$xHomological methods in associative algebras [MSC 2020]$2MF$3SUNC021691 606 $a16P10$xFinite rings and finite-dimensional associative algebras [MSC 2020]$2MF$3SUNC022013 606 $a16Gxx$xRepresentation theory of associative rings and algebras [MSC 2020]$2MF$3SUNC022014 606 $a18G80$xDerived categories, triangulated categories [MSC 2020]$2MF$3SUNC022198 606 $a16D50$xInjective modules, self-injective rings [MSC 2020]$2MF$3SUNC022199 606 $a16E10$xHomological dimensions in associative algebras [MSC 2020]$2MF$3SUNC022201 620 $dCambridge$3SUNL000024 700 1$aHappel$b, Dieter$3SUNV024758$059001 712 $aCambridge university$3SUNV000097$4650 801 $aIT$bSOL$c20201012$gRICA 856 4 $uhttps://books.google.it/books?id=rwGuMdtocAEC&printsec=frontcover&dq=Triangulated+categories+in+the+representation+theory+of+finite+dimensional+algebras&hl=it&sa=X&ved=0ahUKEwiM5sLF0K_bAhUID8AKHTDmBzUQ6AEIJzAA#v=onepage&q&f=false$zPreview 912 $aSUN0029908 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 16-XX 1823 $e08 1893 I 20041209 996 $aTriangulated Categories in the Representation Theory of Finite-Dimensional Algebras$9384026 997 $aUNICAMPANIA LEADER 01972nam a2200349 i 4500 001 991003894349707536 008 080918s2007 nyua b 001 0 eng 020 $a9780521832588 020 $a0521832586 035 $ab13767860-39ule_inst 040 $aDip.to Matematica$beng 082 04$a531.11$222 084 $aAMS 37D25 084 $aLC QA871.B365 100 1 $aBarreira, Luis$0472518 245 10$aNonuniform hyperbolicity :$bdynamics of systems with nonzero Lyapunov exponents /$cLuis Barreira, Yakov Pesin 260 $aCambridge :$bCambridge University Press,$c2007 300 $axiv, 513 p. :$bill. ;$c25 cm 440 0$aEncyclopedia of mathematics and its applications ;$v115 504 $aIncludes bibliographical references (p. 491-500) and index 505 0 $aConcepts of nonuniform hyperbolicity ; Lyapunov exponents for linear extensions ; Regularity of cocycles ; Methods for estimating exponents ; The derivative cocyle ; Examples of systems with hyperbolic behavior ; Stable manifold theory ; Basic properties of stable and unstable manifolds ; Smooth measures ; Measure-theoretic entropy and lyapunov exponents ; Stable ergodicity and lyapunov exponents. more examples of systems with nonzero exponents ; Geodesic flows ; SRB measures ; Hyperbolic measure: entropy and dimension ; Hyperbolic measures: topological properties 650 0$aLyapunov exponents 650 0$aLyapunov stability 650 0$aDynamics 700 1 $aPesin, Yakov B.$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0319209 856 41$a$uhttp://catdir.loc.gov/catdir/toc/ecip0714/2007013057.html" target-external$zTable of contents 907 $a.b13767860$b28-01-14$c18-09-08 912 $a991003894349707536 945 $aLE013 37D BAR11 (2007)$g1$i2013000208923$lle013$op$pE81.96$q-$rl$s- $t0$u0$v0$w0$x0$y.i14848466$z02-10-08 996 $aNonuniform hyperbolicity$91747139 997 $aUNISALENTO 998 $ale013$b18-09-08$cm$da $e-$feng$gnyu$h0$i0