LEADER 00997nam a22002651i 4500 001 991003824189707536 005 20030922144349.0 008 031111s1991 uik|||||||||||||||||eng 020 $a0704339056 035 $ab1247888x-39ule_inst 035 $aARCHE-051216$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a813 100 1 $aWalker, Alice$0203309 245 14$aThe color purple /$cAlice Walker 250 $a10. anniversary limited. ed. 260 $aLondon :$bThe Women's Press,$c1991 300 $a245 p. ;$c20 cm 907 $a.b1247888x$b02-04-14$c13-11-03 912 $a991003824189707536 945 $aLE012 818.54 WAL 4$g1$i2012000124998$lle012$o-$pE0.00$q-$rl$s- $t0$u6$v0$w6$x0$y.i12910983$z13-11-03 945 $aLE012 818.54 WAL 4/A$g2$i2012000125001$lle012$o-$pE0.00$q-$rl$s- $t0$u1$v1$w1$x0$y.i12910995$z13-11-03 996 $aColor purple$9180794 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$feng$guik$h4$i2 LEADER 04978nam 22006975 450 001 9910616389303321 005 20251009110014.0 010 $a9789811961762$b(electronic bk.) 010 $z9789811961755 024 7 $a10.1007/978-981-19-6176-2 035 $a(MiAaPQ)EBC7107656 035 $a(Au-PeEL)EBL7107656 035 $a(CKB)24996011900041 035 $a(PPN)265857651 035 $a(DE-He213)978-981-19-6176-2 035 $a(OCoLC)1349943615 035 $a(EXLCZ)9924996011900041 100 $a20221006d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMagnetic Resonators $eFeedback with Magnetic Field and Magnetic Cavity /$fby C. S. Nikhil Kumar 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (105 pages) 225 1 $aSpringerBriefs in Applied Sciences and Technology,$x2191-5318 311 08$aPrint version: Nikhil Kumar, C. S. Magnetic Resonators Singapore : Springer,c2022 9789811961755 327 $aIntro -- Contents -- Abbreviations -- Notations -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Magnonic Crystals -- 1.1.1 Magnon-Based Computing -- 1.1.2 Magnetoelectronics and Magnon Spintronics -- 1.1.3 STNO Configurations -- 1.1.4 STNO Device Principle -- 1.1.5 Mutual Synchronization of STNOs Through Electrical Coupling -- 1.2 Landau-Lifshitz-Gilbert-Slonczewski Equation -- 1.2.1 Plane Wave Method -- 1.2.2 Micromagnetics -- 1.3 Summary -- References -- 2 Spin-Wave Excitation Patterns Generated by Spin-Torque Nano-Oscillators -- 2.1 Approximate Model -- 2.2 Micromagnetic Simulations -- 2.2.1 Forward Volume Spin Waves -- 2.2.2 Backward Volume and Surface Spin Waves -- 2.2.3 Multiple NC STNOs -- 2.3 Summary -- References -- 3 Coherent Spin-Wave Oscillations Through External Feedback -- 3.1 Spintronic Oscillator with Magnetic Field Feedback -- 3.1.1 Quasi-Static Simulations -- 3.1.2 Magnetization Dynamics -- 3.1.3 Simulation Results -- 3.2 Electrical Analogy -- 3.3 Summary -- References -- 4 Magnonic Spectra in 2D Antidot Magnonic Crystals with Line Defect -- 4.1 Plane Wave Method -- 4.1.1 Convergence -- 4.2 Eigenmodes -- 4.3 Micromagnetic Simulations -- 4.3.1 Magnonic Spectra -- 4.3.2 Antidot Magnonic Crystal Waveguide -- 4.3.3 Dispersion Analysis of an MC3 Cavity -- 4.4 Summary -- References -- 5 Sustaining Spin-Wave Oscillations Through Internal Feedback -- 5.1 Nanocontact STNO in MC Cavity -- 5.1.1 Design Methodology -- 5.1.2 Spin-Wave Dynamics with MCC-End Fire Antenna -- 5.1.3 Current-Induced Oersted Field in a Micromagnetic Simulation -- 5.1.4 Quality Factor Calculation -- 5.2 Phase Locking of Nanocontact STNOs-Broad Side Antenna -- 5.2.1 Symmetric Array of NC STNOs -- 5.2.2 Asymmetric Array of NC STNOs -- 5.2.3 Detuning of SWs in NC STNOs in MC Cavity -- 5.3 Summary -- References -- 6 Summary and Future Work. 327 $a6.1 Future Work -- References -- Publications. 330 $aThe phase-locking of multiple spin-torque nano oscillators(STNOs) is considered the primary vehicle to achieve sufficient signal quality for applications. This book highlights the resonator's design and its need for feedback for phase locking of STNOs. STNOs can act as sources of tunable microwaves after being phase-locked together. External feedback from a coplanar waveguide placed above an STNO helps ensures coherent single domain oscillations. STNOs placed within magnonic crystal cavities also demonstrate coherent oscillations. Arrays of such cavities provide a route to scale power levels from such nano-oscillators. The book presents numerical and micromagnetics to validate the design. . 410 0$aSpringerBriefs in Applied Sciences and Technology,$x2191-5318 606 $aPhysics 606 $aTelecommunication 606 $aMicroresonators (Optoelectronics) 606 $aMagnetic materials 606 $aMathematical physics 606 $aApplied and Technical Physics 606 $aMicrowaves, RF Engineering and Optical Communications 606 $aMicroresonators 606 $aMagnetic Materials 606 $aTheoretical, Mathematical and Computational Physics 615 0$aPhysics. 615 0$aTelecommunication. 615 0$aMicroresonators (Optoelectronics) 615 0$aMagnetic materials. 615 0$aMathematical physics. 615 14$aApplied and Technical Physics. 615 24$aMicrowaves, RF Engineering and Optical Communications. 615 24$aMicroresonators. 615 24$aMagnetic Materials. 615 24$aTheoretical, Mathematical and Computational Physics. 676 $a153.6 700 $aNikhil Kumar$b C. S.$01262379 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910616389303321 996 $aMagnetic Resonators$92950630 997 $aUNINA