LEADER 03235nam 2200661 450 001 9910480651303321 005 20180613001306.0 010 $a1-4704-0434-6 035 $a(CKB)3360000000465017 035 $a(EBL)3114156 035 $a(SSID)ssj0000973884 035 $a(PQKBManifestationID)11533032 035 $a(PQKBTitleCode)TC0000973884 035 $a(PQKBWorkID)10984709 035 $a(PQKB)10029123 035 $a(MiAaPQ)EBC3114156 035 $a(PPN)195417216 035 $a(EXLCZ)993360000000465017 100 $a20050324h20052005 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRigidity theorems for actions of product groups and countable Borel equivalence relations /$fGreg Hjorth, Alexander S. Kechris 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2005] 210 4$dİ2005 215 $a1 online resource (126 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 833 300 $a"Volume 176, number 833 (first of 4 numbers)." 311 $a0-8218-3771-0 320 $aIncludes bibliographical references (pages 107-109). 327 $a""Contents""; ""Introduction""; ""Chapter 0. Preliminaries""; ""0A. Actions""; ""0B. Equivalence relations""; ""0C. Borel notions""; ""0D. Measures""; ""0E. Borel actions and measures""; ""0F. Amenability""; ""Chapter 1. Actions of Free Groups and Treeable Equivalence Relations""; ""Chapter 2. A Cocycle Reduction Result""; ""Chapter 3. Some Applications""; ""3A. An ""elementary"" proof of existence of incomparables""; ""3B. Further ""elementary"" proofs of theorems of Adamsa???Kechris""; ""3C. ""Elementary"" proofs of results of Adams and Thomas"" 327 $a""3D. Relative ergodicity and rigidity results for product group actions""""Chapter 4. Factoring Homomorphisms""; ""Chapter 5. Further Applications""; ""5A. Rigidity results for reducibility and stable orbit equivalence""; ""5B. Products of hyperbolic groups""; ""Chapter 6. Product Actions, I""; ""Chapter 7. Product Actions, II""; ""Chapter 8. A Final Application""; ""Appendix A: Strong Notions of Ergodicity""; ""A1. Homomorphisms and relative ergodicity""; ""A2. E[sub(0)]a???ergodicity and almost invariant sets""; ""A3. Almost invariant vectors"" 327 $a""E1. Amenable classes of structures""""E2. The factoring lemma""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 833. 606 $aSet theory 606 $aBorel sets 606 $aMeasure theory 606 $aErgodic theory 606 $aRigidity (Geometry) 608 $aElectronic books. 615 0$aSet theory. 615 0$aBorel sets. 615 0$aMeasure theory. 615 0$aErgodic theory. 615 0$aRigidity (Geometry) 676 $a510 s 676 $a511.3/22 700 $aHjorth$b Greg$f1963-$067025 702 $aKechris$b A. S.$f1946- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480651303321 996 $aRigidity theorems for actions of product groups and countable Borel equivalence relations$92271248 997 $aUNINA LEADER 01130nam a2200301|i 4500 001 991003765449707536 005 20021223130531.0 008 020730s|||| ||| u u engu 020 $a086598154X (pbk.) : 020 $a0865981485 : 035 $ab11860789-39ule_inst 035 $aLE02988016$9ExL 040 $aISUFI - Sett. Diritti e Politiche Euromediterranee$bita 082 0 $a330.903 100 1 $aMokyr, Joel$0129193 245 14$aThe Economics of the Industrial Revolution /$cedited by Joel Mokyr 260 0 $aTotowa, NJ :$bRowman & Allanheld,$c1985 300 $ax, 267 p. :$bill. ;$c25 cm. 500 $aIncludes index. 500 $aBibliography: p. [241]-259. 650 4$aGran Bretagna$xCondizioni economiche$y1760-1860 650 4$aGran Bretagna - rivoluzione industriale 907 $a.b11860789$b04-10-06$c23-12-02 912 $a991003765449707536 945 $aLE029 330 MOK01.01$g1$iLE029-4153$lle029$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i12113153$z23-12-02 996 $aEconomics of the Industrial Revolution$9901380 997 $aUNISALENTO 998 $ale029$b01-01-02$cm$da $e-$feng$gxx $h4$i1