LEADER 01781nam0 2200361 i 450 001 SUN0029503 005 20180531101811.351 010 $a978-05-213-9580-9$d0.00 100 $a20041206d1991 |0engc50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aAnalytic pro-p groups$fJ. D. Dixon ... [et al.] 210 $aCambridge$cCambridge university$d1991 215 $a251 p.$d23 cm. 410 1$1001SUN0029528$12001 $a*London Mathematical Society lecture notes series$v157$1210 $aCambridge$cCambridge university. 606 $a20-XX$xGroup theory and generalizations [MSC 2020]$2MF$3SUNC019715 606 $a20E18$xLimits, profinite groups [MSC 2020]$2MF$3SUNC021894 606 $a32Pxx$xNon-Archimedean analysis [MSC 2020]$2MF$3SUNC023998 606 $a14L05$xFormal groups, $p$-divisible groups [MSC 2020]$2MF$3SUNC024013 606 $a22E35$xAnalysis on p-adic Lie groups [MSC 2020]$2MF$3SUNC024097 606 $a32C18$xTopology of analytic spaces [MSC 2020]$2MF$3SUNC024098 606 $a32K15$xDifferentiable functions on analytic spaces, differentiable spaces [MSC 2020]$2MF$3SUNC024099 606 $a20D15$xNilpotent groups, $p$-groups [MSC 2020]$2MF$3SUNC029088 620 $dCambridge$3SUNL000024 702 1$aDixon$b, John D.$3SUNV024391 712 $aCambridge university$3SUNV000097$4650 801 $aIT$bSOL$c20201019$gRICA 856 4 $uhttps://books.google.it/books?id=7yxplSjMWtkC&printsec=frontcover&hl=it#v=onepage&q&f=false$zPreview of the 2nd ed. 912 $aSUN0029503 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 20-XX 1150 $e08 1868 II 20041206 996 $aAnalytic pro-p groups$9376539 997 $aUNICAMPANIA LEADER 01119nam a2200277 i 4500 001 991001261749707536 005 20020507190211.0 008 990517s1963 sw ||| | eng 035 $ab10823025-39ule_inst 035 $aLE01309520$9ExL 040 $aDip.to Matematica$beng 082 0 $a510 084 $aAMS 00B25 111 2 $aInternational congress of mathematicians <14. ; 1962 ; Stockolm>$0536537 245 10$aProceedings of the international congress of mathematicians. [ICM 1962] :$b[Stockholm] 15-22 August 1962 /$c[edited by V. Stenstrom] 260 $aDjursholm :$bInst. Mittag-Leffler,$cstampa 1963 300 $al, 595 p. :$bill. ;$c24 cm. 500 $aIncludes index 650 4$aMathematicians$xCongresses 700 1 $aStenstrom, V. 907 $a.b10823025$b21-09-06$c28-06-02 912 $a991001261749707536 945 $aLE013 00B ICM114 (1963)$g1$i2013000113685$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10930395$z28-06-02 996 $aProceedings of the international congress of mathematicians.$9924135 997 $aUNISALENTO 998 $ale013$b01-01-99$cm$da $e-$feng$gsw $h0$i1 LEADER 01115nam a2200313 i 4500 001 991003717739707536 008 191009s2012 nyua b 001 0 eng d 020 $a9781489994752 035 $ab14376271-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.07$221 084 $aAMS 58-01 084 $aAMS 53-01 084 $aAMS 57-01 084 $aLC QA613 100 1 $aLee, John M.$061929 245 10$aIntroduction to smooth manifolds /$cJohn M. Lee 250 $a2nd ed. 260 $aNew York :$bSpringer,$cc2012 300 $axv, 708 p. :$bill. ;$c23 cm 490 1 $aGraduate texts in mathematics,$x0072-5285 ;$v218 504 $aIncludes bibliographical references and index 650 4$aManifolds (Mathematics) 907 $a.b14376271$b22-11-19$c22-11-19 912 $a991003717739707536 945 $aLE013 53-XX LEE11 (2012)$g1$i2013000230726$lle013$op$pE42.79$q-$rl$s- $t0$u0$v0$w0$x0$y.i15908057$z22-11-19 996 $aIntroduction to smooth manifolds$9377284 997 $aUNISALENTO 998 $ale013$b22-11-19$cm$da $e-$feng$gnyu$h0$i0