LEADER 01101nam a2200277 i 4500 001 991003642499707536 008 080522s2005 it b 001 0 ita d 020 $a8815097430 035 $ab13728659-39ule_inst 040 $aDip.to Filologia Class. e Scienze Filosofiche$bita 082 $a111 100 1 $aCastelli, Patrizia$0162393 245 12$aL'estetica del Rinascimento /$cPatrizia Castelli 260 $aBologna :$bIl mulino,$c2005 300 $a262 p. ;$c21 cm 440 0$aLessico dell'estetica ;$v16 504 $aBibliografia: p. 243-247 650 04$aEstetica$zItalia$xStoria$ySec. 15.-16. 650 04$aRinascimento 907 $a.b13728659$b23-02-12$c22-05-08 912 $a991003642499707536 945 $aLE019 A3 AR G 11$g1$i2019000058094$lle019$op$pE13.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i15108041$z12-04-10 945 $aLE007 111 CAS 01.01$g1$i2007000143100$lle007$nLE007 2008 Spedicati$op$pE13.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i14768173$z04-06-08 996 $aEstetica del Rinascimento$9723317 997 $aUNISALENTO 998 $ale019$a(2)le007$b22-05-08$cm$da $e-$fita$git $h2$i0 LEADER 01074nam a2200289 i 4500 001 991000792679707536 005 20020507173644.0 008 990308s1998 sz ||| | eng 020 $a376435805X 035 $ab10757995-39ule_inst 035 $aLE01302399$9ExL 040 $aDip.to Matematica$beng 082 0 $a514.72 084 $aAMS 57R99 100 1 $aSpring, David$061876 245 10$aConvex integration theory :$bsolutions to the h-principle in geometry and topology /$cDavid Spring 260 $aBasel ; Boston ; Berlin :$bBirkhauser,$cc1998 300 $aviii, 212 p. :$bill. ;$c24 cm. 490 0 $aMonographs in mathematics ;$v92 500 $aIncludes bibliographical references and indexes 650 4$aDifferential topology 907 $a.b10757995$b23-02-17$c28-06-02 912 $a991000792679707536 945 $aLE013 57R SPR11 (1998)$g1$i2013000112169$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10852608$z28-06-02 996 $aConvex integration theory$9374783 997 $aUNISALENTO 998 $ale013$b01-01-99$cm$da $e-$feng$gsz $h0$i1