LEADER 00774nam 2200217z- 450 001 996320828803316 005 20160818152915.0 035 $a(CKB)9870000000000640 035 $a(EXLCZ)999870000000000640 100 $a20131209c2012uuuu -u- - 101 0 $ager 200 10$aDer Leipziger Auwald : ein dynamischer Lebensraum ; Tagungsband zum 5. Leipziger Auensymposium am 16. April 2011 210 $aLeipzig$cUFZ 701 $aZäumer$bUta$01010875 701 $aKasperidus$bHans Dieter$01010876 701 $aWirth$bChristian$01010877 701 $aReiher$bAlmut$01010878 906 $aBOOK 912 $a996320828803316 996 $aDer Leipziger Auwald : ein dynamischer Lebensraum ; Tagungsband zum 5. Leipziger Auensymposium am 16. April 2011$92339996 997 $aUNISA LEADER 03648nam a2200481 i 4500 001 991003634739707536 006 m o d 007 cr cnu|||unuuu 008 190403s2018 sz a ob 001 0 eng d 020 $a9783319913711$q(electronic bk.) 020 $a3319913719$q(electronic bk.) 020 $z9783319913698$q(print) 020 $z3319913697 024 7 $a10.1007/978-3-319-91371-1$2doi 035 $ab14363641-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.36$223 084 $aAMS 57R17 084 $aAMS 32Q65 084 $aLC QA641-670 100 1 $aWendl, Chris$0756218 245 10$aHolomorphic curves in low dimensions$h[e-book] :$bfrom symplectic ruled surfaces to planar contact manifolds /$cChris Wendl 264 1$aCham, Switzerland :$bSpringer,$c2018 300 $a1 online resource (xiii, 294 pages) :$billustrations (some color) 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 347 $atext file$bPDF$2rda 490 1 $aLecture notes in mathematics,$x0075-8434 ;$v2216 504 $aIncludes bibliographical references and index 505 0 $a1 Introduction ; 2 Background on Closed Pseudoholomorphic Curves ; 3 Blowups and Lefschetz Fibrations ; 4 Compactness ; 5 Exceptional Spheres ; 6 Rational and Ruled Surfaces ; 7 Uniruled Symplectic 4-Manifolds ; 8 Holomorphic Curves in Symplectic Cobordisms ; 9 Contact 3-Manifolds and Symplectic Fillings ; Appendix ; Bibliography, Index 520 $aThis monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details 650 0$aHolomorphic mappings 650 0$aGlobal analysis (Mathematics) 650 0$aManifolds (Mathematics) 650 0$aGeometry, Differential. 650 0$aComplex manifolds 856 40$zAn electronic book accessible through the World Wide Web$uhttp://link.springer.com/10.1007/978-3-319-91371-1 907 $a.b14363641$b03-03-22$c03-04-19 912 $a991003634739707536 996 $aHolomorphic curves in low dimensions$91524086 997 $aUNISALENTO 998 $ale013$b03-04-19$cm$d@ $e-$feng$gsz $h0$i0