LEADER 02524nam a2200421 i 4500 001 991003628119707536 006 m o d 007 cr cnu|||unuuu 008 190321s2017 sz ob 001 0 eng d 020 $a9783319743509$q(electronic bk.) 020 $a3319743503$q(electronic bk.) 024 7 $a10.1007/978-3-319-74350-9$2doi 035 $ab14362508-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515.53$223 084 $aAMS 33C10 100 1 $aBaricz, Árpád$0478939 245 10$aSeries of Bessel and Kummer-type functions$h[e-book] /$cÁrpád Baricz, Dragana Jankov Ma?irevi?, Tibor K. Pogány 264 1$aCham, Switzerland :$bSpringer,$c2017 300 $a1 online resource (xix, 201 pages) 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 490 1 $aLecture notes in mathematics,$x0075-8434 ;$v2207 504 $aIncludes bibliographical references and index 505 0 $a1. Introduction and Preliminaries -- 2. Neumann Series -- 3. Kapteyn Series -- 4. Schlomilch Series -- 5. Miscellanea 520 $aThis book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schlömilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions. The aim is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions and summation formulas for the series of Bessel functions considered. Some integral representations are deduced using techniques from the theory of differential equations. The text is aimed at a mathematical audience, including graduate students and those in the scientific community who are interested in a new perspective on Fourier?Bessel series, and their manifold and polyvalent applications, mainly in general classical analysis, applied mathematics and mathematical physics 650 0$aBessel functions 650 0$aFunctions, Special 700 1 $aJankov Mas?revic?, Dragana 700 1 $aPoga?y, Tibor K. 776 08$iPrinted edition:$z9783319743493 856 40$zAn electronic book accessible through the World Wide Web$uhttps://link.springer.com/book/10.1007/978-3-319-74350-9 907 $a.b14362508$b03-03-22$c21-03-19 912 $a991003628119707536 996 $aSeries of Bessel and Kummer-type functions$91749802 997 $aUNISALENTO 998 $ale013$b21-03-19$cm$d@ $e-$feng$gsz $h0$i0