LEADER 00955nam a22002651i 4500 001 991003626879707536 005 20040726141525.0 008 040802s1950 it a||||||||||||||||ita 035 $ab13102618-39ule_inst 035 $aARCHE-105522$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a849.1 100 1 $aRudel, Jaufré$0436542 245 10$aLiriche =$bVers /$cJaufre Rudel ; [a cura di Mario Casella] 250 $a2. ed. 260 $aFirenze :$bFussi,$cstampa 1950 300 $a89 p. :$bill. ;$c17 cm 440 3$aIl melagrano ;$v1 700 1 $aCasella, Mario$d<1886-1956> 907 $a.b13102618$b02-04-14$c05-08-04 912 $a991003626879707536 945 $aLE002 Fondo Giudici L 1315$g1$i2002000344915$lle002$nC. 1$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13736905$z05-08-04 996 $aVers$940861 997 $aUNISALENTO 998 $ale002$b05-08-04$cm$da $e-$fita$git $h0$i1 LEADER 10810nam 22004693 450 001 9910830286803321 005 20240203060212.0 010 $a3-527-83758-2 010 $a3-527-83760-4 035 $a(MiAaPQ)EBC31097938 035 $a(Au-PeEL)EBL31097938 035 $a(EXLCZ)9930157172900041 100 $a20240203d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlkaline Anion Exchange Membranes for Fuel Cells $eFrom Tailored Materials to Novel Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (451 pages) 311 08$aPrint version: Thomas, Jince Alkaline Anion Exchange Membranes for Fuel Cells Newark : John Wiley & Sons, Incorporated,c2024 9783527350391 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 An Introduction to Polymeric Electrolyte Alkaline Anion Exchange Membranes -- 1.1 Introduction -- 1.2 Different Types of Electrolytes -- 1.3 Why Polymer Electrolytes Are Important? -- 1.4 Anion Exchange Membrane (AEM) -- 1.4.1 Fundamental Concepts of Anion Exchange Membranes as Polymer Electrolytes -- 1.4.2 Classification of AEM -- 1.4.3 Pros and Cons of AEM -- 1.4.4 Application of AEM -- 1.5 AEMs in Fuel Cells -- 1.6 Conclusion and Outlook -- References -- 2 Historical and Recent Developments inAnion Exchange Membranes (AEM) -- 2.1 Introduction -- 2.2 Fuel Cell: Conventional Versus Modern Approach -- 2.3 Role of AEM in Fuel Cell Technology -- 2.4 Preparation of AEMs -- 2.5 Challenges in Existing AEMs -- 2.6 Recent Advancement -- 2.7 Major Challenges -- 2.8 Commercially Available AEMs -- 2.9 Current Scenario and Future Market -- 2.10 Summary and Concluding Remarks -- References -- 3 Fabrication Processes and Characterization Proceduresof Anion Exchange Membranes -- 3.1 Introduction -- 3.2 Fabrication Processes of Anion Exchange Membranes -- 3.2.1 AEM of Cationic Charged Polymers -- 3.2.2 AEMs of Ion-Solvating Polymers -- 3.2.3 AEMs with Nanofibers -- 3.2.4 Hybrid AEMs -- 3.2.5 Recent Developments in AEMs -- 3.3 Characterization Procedures of AEMs -- 3.3.1 Ionic Conductivity -- 3.3.2 IEC, Swelling Ratio, and Water Content -- 3.3.3 Mechanical and Thermal Properties -- 3.3.4 Chemical Stability -- 3.3.5 Chemical Composition and Morphological Characterization -- 3.3.6 Other Characterizations -- 3.4 Conclusions -- References -- 4 Types of Polymeric Electrolyte Anion Exchange Membranes: Heterogeneous and Grafted Membranes, Interpenetrating Polymer Networks and Homogeneous Membranes -- 4.1 Heterogenous Anion Exchange Membranes -- 4.1.1 Ion-Solvating Polymers -- 4.1.2 Hybrid Membranes. 327 $a4.2 Grafted Anion Exchange Membranes -- 4.2.1 Radiation-Grafted Membranes -- 4.2.2 Side Chain Grafted Membranes -- 4.2.3 Long-side-chain Grafted Membranes -- 4.3 Interpenetrating Anion Exchange Membranes -- 4.3.1 Anion Exchange Membranes Based on Interpenetrating Polymer Networks (IPN) -- 4.3.2 Anion Exchange Membranes Based on Semi-Interpenetrating Polymer Networks (Semi-IPN) -- 4.4 Homogenous Membranes -- 4.4.1 Homogenous Membranes Based on Poly(arylene ether)s -- 4.4.2 Homogenous Membranes Based on Poly(styrene)s -- 4.4.3 Homogenous Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide) -- 4.4.4 Fluorene-Containing Homogenous Membranes -- 4.4.5 Homogenous Membranes Based on Polyolefins -- 4.4.6 Other Kinds of Homogenous Membranes -- 4.5 Conclusions -- References -- 5 Proton Exchange Membranes Versus Anion Exchange Membranes -- 5.1 Introduction -- 5.2 Proton Exchange Membrane (PEM) -- 5.2.1 Classification of PEM Membranes Based on the Materials of Synthesis -- 5.2.1.1 Perfluorinated Ionomeric Membranes -- 5.2.1.2 Partially Fluorinated Hydrocarbon Membranes -- 5.2.1.3 Non-fluorinated Hydrocarbon Membranes -- 5.2.1.4 Acid-Base Complexes -- 5.2.2 Preparation Methods of PEM -- 5.2.3 Proton Transport Mechanism in PEM -- 5.2.4 Current State of Art of PEM -- 5.3 Comparison with AEM -- 5.3.1 Materials Used for Preparations -- 5.3.2 Investigative Methods and Measurement for Ion-Exchange Membranes -- 5.3.2.1 Ionic Conductivity -- 5.3.2.2 Water Absorption or Swelling Index -- 5.3.2.3 Ion-Exchange Capacity (IEC) of the Membrane -- 5.3.2.4 Thermal Stability and Mechanical Strength -- 5.3.2.5 Durability of the Membranes -- 5.3.3 Water Management -- 5.3.4 Transport Mechanism -- 5.3.5 Catalyst Used in PEMFC and AEMFC -- 5.3.6 MEA Fabrication -- 5.3.7 Fuels Used in Fuel Cells -- 5.3.8 Fuel Cell Efficiency -- 5.4 Conclusion -- References. 327 $a6 Transport and Conductive Mechanisms in Anion Exchange Membranes -- 6.1 Introduction -- 6.2 Transport Mechanisms of Hydroxide Ion in AEMs -- 6.3 AEM Structure-Transport Efficiency Relationships -- 6.4 Ion Conductivity Measurement -- 6.5 Carbonation Process in AEMs -- 6.5.1 Elucidating the Dynamics of Carbonation -- 6.5.2 Impact of Carbonation on AEM and AEMFC -- 6.5.3 Strategies to Avoid Carbonation of OH Ions -- 6.6 Conclusion and Outlook -- References -- 7 Anion Exchange Membranes Based on Quaternary Ammonium Cations and Modified Quaternary Ammonium Cations -- 7.1 Introduction -- 7.1.1 Background of AEMFC Invention -- 7.2 Quaternary Ammonium (QA)-Based AEMs - Recent Developments and Performances -- 7.3 Other Factors Affecting Performance of Fuel Cells -- 7.4 Summary and Perspectives -- Acknowledgments -- References -- 8 Guanidinium Cations and Their Derivatives-Based Anion Exchange Membranes -- 8.1 Introduction -- 8.2 General Synthetic Method of Various Guanidiniums -- 8.3 Degradation Mechanism and Alkaline Stability of Guanidinium Cations -- 8.4 Preparation of Guanidinium and Their Derivative-Based AEMs -- 8.4.1 Benzyl-guanidinium AEMs -- 8.4.2 Alkyl-guanidinium AEMs -- 8.4.3 Aryl-guanidinium AEMs -- 8.4.4 Other Guanidinium-Based AEMs -- 8.5 Prospect -- References -- 9 Anion Exchange Membranes Based on Imidazolium and Triazolium Cations -- 9.1 Introduction -- 9.2 AEMs Based on Imidazolium Cations -- 9.2.1 AEMs Based on Imidazolium-type Ionic Liquids -- 9.2.2 Imidazole Containing Polymers and Composites -- 9.3 AEM Based on Triazolium Cations -- 9.4 Summary and Future Perspectives -- Acknowledgments -- References -- 10 Radiation-Grafted and Cross-linked Polymers-Based Anion Exchange Membranes -- 10.1 Historic Overview -- 10.2 Sources of Radiation -- 10.3 Types of Radiation-Induced Grafting -- 10.3.1 Absorbed Dose -- 10.3.2 Dose Rate. 327 $a10.3.3 Atmosphere During Irradiation -- 10.3.4 Temperature During Irradiation -- 10.4 Base Polymer -- 10.5 Grafting Solution -- 10.6 Physicochemical Properties of RG-AEMs -- 10.7 Cross-linking in AEMs -- 10.7.1 Physical Cross-linking -- 10.7.2 Chemical Cross-linking -- 10.7.2.1 Cross-linking with Diamine Agents -- 10.7.2.2 Chemical Cross-linking Reaction with Other Agents -- 10.7.2.3 Other Methods of Producing Cross-linked Membranes -- 10.8 Conclusions -- References -- 11 Degradation Mechanisms of Anion Exchange Membranes due to Alkali Hydrolysis and Radical Oxidative Species -- 11.1 Introduction -- 11.2 Necessity to Investigate the Degradation Mechanism in AEMs -- 11.3 Structure and Degradation Mechanism of Tailored Anion Exchange Groups and Polymers -- 11.3.1 Alkaline Hydrolysis of Cationic Head Groups -- 11.3.2 Alkaline Hydrolysis of Novel Metallocenium Based AEMs -- 11.3.3 Alkaline Hydrolysis of Polymers -- 11.3.3.1 Degradation Mechanism in Poly(arylene ethers) (PAEs) -- 11.3.3.2 Degradation Mechanism in Fluorinated Polymer -- 11.3.3.3 Degradation Mechanism in Poly(benzimidazole) Based Polymers -- 11.3.3.4 Degradation Mechanism in Poly(alkyl) and Poly(arene) Based Polymers -- 11.3.4 Free Radical Oxidative Degradation of AEM -- 11.4 Prospects and Outlook -- 11.5 Conclusion -- References -- 12 Computational Approaches to Alkaline Anion Exchange Membranes -- 12.1 Introduction -- 12.2 Why Computational Studies Are Important in Anion Exchange Membranes? -- 12.3 Tools of In Silico Approaches in Anion Exchange Membranes -- 12.3.1 Electronic Structure Methods in Anion Exchange Membranes -- 12.3.1.1 Analysis on HOMO-LUMO Energies and Mulliken Charges -- 12.3.1.2 Analysis on ESP -- 12.3.1.3 Analysis on Chemical Structure and Bonding Nature -- 12.3.1.4 Analysis on Degradation Pathways -- 12.3.2 Molecular Dynamics in Anion Exchange Membranes. 327 $a12.3.3 Continuum Modeling and Simulation in Anion Exchange Membranes -- 12.3.4 Monte Carlo Simulations in Anion Exchange Membranes -- 12.3.5 Machine Learning in Anion Exchange Membranes -- 12.4 Challenges and Outlook -- 12.5 Conclusion -- References -- 13 An Overview of Commercial and Non-commercial Anion Exchange Membranes -- 13.1 Introduction -- 13.1.1 Characteristics and Existing Problems of Commercial Alkaline Anion Exchange Membranes -- 13.1.1.1 Fumatech: Fumasep -- 13.1.1.2 Tokuyama: A201 -- 13.1.1.3 Ionomr: AEMION -- 13.1.1.4 Dioxide Materials: Sustainion -- 13.1.1.5 Orion Polymer: Orion TM1 -- 13.1.1.6 Xergy: Xion-Dappion, Xion-Durion, Xion-Pention -- 13.1.1.7 Versogen: PiperION -- 13.1.1.8 Membranes International Inc.: AMI-7001 -- 13.1.1.9 Asahi Glass: Selemion AMV -- 13.1.2 Characteristics and Existing Problems of Non-Commercial Alkaline Anion Exchange Membrane -- 13.1.3 Strategies to Improve the Properties of AEMs -- 13.1.3.1 The Regulation of Microphase Morphologies -- 13.1.3.2 Constructing Free Volumes -- 13.1.3.3 The Introduction of Cross-linking Structures -- 13.1.3.4 Other Physical Methods -- 13.1.3.5 The Development of Novel Cationic Functional Groups and Aryl Ether-free Main Chains with High Stability -- 13.2 Summary and Outlooks -- Acknowledgment -- References -- 14 Membrane Electrode Assembly Preparation for Anion Exchange Membrane Fuel Cell (AEMFC): Selection of Ionomers and How to Avoid CO2 Poisoning -- 14.1 The Preparation of Membrane Electrode Assembly -- 14.2 Selection of Ionomers -- 14.2.1 Commercial Ionomers -- 14.2.2 Custom-made Ionomers -- 14.3 Effect of CO2 on AEMFCs -- 14.3.1 Effect of CO2 on Ex Situ Measured Conductivity -- 14.3.2 Effect of CO2 on Electrochemical Reactions on the Electrodes -- 14.3.3 Effect of CO2 on Fuel Cell Performance -- 14.4 Strategies to Avoid CO2 Poisoning. 327 $a14.4.1 Reducing HCO3/CO32 Concentration Through Self-purging. 700 $aThomas$b Jince$01715393 701 $aSchechter$b Alex$01715394 701 $aGrynszpan$b Flavio$01715395 701 $aFrancis$b Bejoy$01715396 701 $aThomas$b Sabu$0851308 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830286803321 996 $aAlkaline Anion Exchange Membranes for Fuel Cells$94109993 997 $aUNINA