LEADER 00965nam a22002651i 4500 001 991003586859707536 005 20031017153409.0 008 031111s1985 uik|||||||||||||||||eng 020 $a0582493072 035 $ab12446841-39ule_inst 035 $aARCHE-048013$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a810.997 100 1 $aKeith, William John$0456710 245 10$aCanadian literature in English /$cW.J. Keith 260 $aLondon :$bLongman,$c1985 300 $aXI, 287 p. ;$c21 cm 440 0$aLongman literature in English series 650 4$aLetteratura canadese$xStoria 907 $a.b12446841$b02-04-14$c13-11-03 912 $a991003586859707536 945 $aLE012 810.997 1 KEI$g1$i2012000157279$lle012$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i12873640$z13-11-03 996 $aCanadian literature in English$9180012 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$feng$guik$h0$i1 LEADER 02837nam 2200649Ia 450 001 9910782293403321 005 20200520144314.0 010 $a1-383-03455-9 010 $a1-281-34180-0 010 $a9786611341800 010 $a0-19-152569-3 035 $a(CKB)1000000000535726 035 $a(EBL)415068 035 $a(OCoLC)437092142 035 $a(SSID)ssj0000101037 035 $a(PQKBManifestationID)11111474 035 $a(PQKBTitleCode)TC0000101037 035 $a(PQKBWorkID)10037521 035 $a(PQKB)10553634 035 $a(Au-PeEL)EBL415068 035 $a(CaPaEBR)ebr10229898 035 $a(CaONFJC)MIL134180 035 $a(PPN)150813007 035 $a(MiAaPQ)EBC415068 035 $a(EXLCZ)991000000000535726 100 $a20071017d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic models in geometry$b[electronic resource] /$fYves Fe?lix, John Oprea, Daniel Tanre? 210 $aOxford $cOxford University Press$d2008 215 $a1 online resource (483 p.) 225 1 $aOxford graduate texts in mathematics ;$v17 300 $aDescription based upon print version of record. 311 $a0-19-920651-1 311 $a0-19-920652-X 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; 1 Lie groups and homogeneous spaces; 2 Minimal models; 3 Manifolds; 4 Complex and symplectic manifolds; 5 Geodesics; 6 Curvature; 7 G-spaces; 8 Blow-ups and Intersection Products; 9 A Florile?ge of geometric applications; A: De Rham forms; B: Spectral sequences; C: Basic homotopy recollections; References; Index 330 $aA text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory. - ;Rational homotopy is a very powerful tool for differential topology and geometry. This text aims to provide graduates and researchers with the tools necessary for the use of rational homotopy in geometry. Algebraic Models in Geometry has been written for topologists who are drawn to geometrical problems amenable to topo 410 0$aOxford graduate texts in mathematics ;$v17. 606 $aHomotopy theory 606 $aGeometry, Algebraic 615 0$aHomotopy theory. 615 0$aGeometry, Algebraic. 676 $a514.24 700 $aFe?lix$b Y$g(Yves)$01555573 701 $aOprea$b John$061874 701 $aTanre?$b Daniel$0349245 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782293403321 996 $aAlgebraic models in geometry$93817582 997 $aUNINA