LEADER 01860nam a2200289 i 4500 001 991003577709707536 008 180911s2016 maua b 001 0 eng d 020 $a9780262035613 035 $ab14354706-39ule_inst 040 $aBibl. Dip.le Aggr. Ingegneria Innovazione - Sez. Ingegneria Innovazione$beng 082 00$a006.31$223 100 1 $aGoodfellow, Ian$0752902 245 10$aDeep learning /$cIan Goodfellow, Yoshua Bengio, and Aaron Courville 264 1$aCambridge, Massachusetts :$bThe MIT Press,$cc2016 300 $axxii, 775 p. :$bill. (some color) ;$c24 cm 490 0 $aAdaptive computation and machine learning 504 $aIncludes bibliographical references and index 505 0 $aApplied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models. 650 0$aMachine learning 700 1 $aBengio, Yoshua$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0752903 700 1 $aCourville, Aaron 907 $a.b14354706$b04-12-18$c29-11-18 912 $a991003577709707536 945 $aLE026 006.31 GOO 01.01 2016$g1$i2026000073033$lle026$nProf. Ricci / Biblioteca$op$pE82.50$q-$rl$s- $t4$u5$v0$w5$x0$y.i15870753$z04-12-18 996 $aDeep learning$91749342 997 $aUNISALENTO 998 $ale026$b11-09-18$cm$da $e $feng$gmau$h0$i0