LEADER 02604nam a2200409 i 4500 001 991003560849707536 006 m o d 007 cr cnu|||unuuu 008 181019s2017 sz a ob 001 0 eng d 020 $a9783319615998$q(electronic bk.) 020 $a3319615998$q(electronic bk.) 024 7 $a10.1007/978-3-319-61599-8$2doi 035 $ab14351936-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 084 $aAMS 20-01 084 $aLC QA182 100 1 $aWehrung, Friedrich$0512591 245 10$aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$h[e-book] /$cFriedrich Wehrung 264 1$aCham, Switzerland :$bSpringer,$c2017 300 $a1 online resource (vii, 242 pages) :$billustrations 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 347 $atext file$bPDF$2rda 490 1 $aLecture notes in mathematics,$x0075-8434 ;$v2188 504 $aIncludes bibliographical references and indexes 505 0 $aChapter 1. Background ; Chapter 2. Partial commutative monoids ; Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms ; Chapter 4. Type monoids and V-measures ; Chapter 5. Type theory of special classes of Boolean inverse semigroups ; Chapter 6. Constructions involving involutary semirings and rings ; Chapter 7. discussion ; Bibliography ; Author Index ; Glossary ; Index 520 $aAdopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided 650 0$aSemigroups 776 08$iPrinted edition:$z9783319615981 856 41$uhttps://link.springer.com/book/10.1007/978-3-319-61599-8$zAn electronic book accessible through the World Wide Web 907 $a.b14351936$b03-03-22$c19-10-18 912 $a991003560849707536 920 $aHiram College INTERNET$bOhioLINK E-book Center c.1$cAVAILABLE 996 $aRefinement monoids, equidecomposability types, and Boolean inverse semigroups$91466433 997 $aUNISALENTO 998 $ale013$b19-10-18$cm$d@ $e-$feng$gsz $h0$i0