LEADER 01027nam a2200253 a 4500 001 991003559639707536 008 080416s1998 xxk b 001 eng d 020 $a0582301882 035 $ab13715586-39ule_inst 040 $aDip.to Lingue$bita 100 1 $aCampbell, Stuart$0242275 245 10$aTranslation into the Second Language /$cStuart Campbell 260 $aLondon ;$aNew York :$bLongman,$c1998 300 $ax, 208 p. ;$c22 cm 440 0$aApplied Linguistics and Language Study 504 $aContiene riferimenti bibliografici ed indice 650 4$aTraduzioni$xTeorie 907 $a.b13715586$b03-05-12$c16-04-08 912 $a991003559639707536 945 $aLE012 418.02 CAM$g1$i2012000260191$lle012$o-$pE0.00$q-$rl$s- $t0$u3$v3$w3$x0$y.i14727365$z16-04-08 945 $aLE012 418.02 CAM 1/A$g2$i2012000443983$lle012$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i15405254$z27-04-12 996 $aTranslation into the second language$91022725 997 $aUNISALENTO 998 $ale012$b16-04-08$cm$da $e-$feng$gxxk$h0$i0 LEADER 05629nam 22005293 450 001 9911046723803321 005 20230630002048.0 010 $a9783736963979 010 $a3736963971 035 $a(CKB)4100000011883396 035 $a(MiAaPQ)EBC6540092 035 $a(Au-PeEL)EBL6540092 035 $a(OCoLC)1246580069 035 $a(Perlego)3154575 035 $a(EXLCZ)994100000011883396 100 $a20210901d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-step MOVPE, in-situ etching and buried implantation 205 $a1st ed. 210 1$aGo?ttingen :$cCuvillier Verlag,$d2021. 210 4$dİ2021. 215 $a1 online resource (251 pages) 225 1 $aInnovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut fu?r Ho?chstfrequenztechnik ;$vv.63 311 08$a9783736973978 311 08$a3736973977 327 $aIntro -- 1 Introduction -- 2 Zincblende III-V semiconductors -- 2.2 Zincblende crystal structure -- 2.3 Point defects in III-V semiconductors -- 2.4 III-V semiconductors and optoelectronics -- 3 MOVPE growth of III-V compounds -- 3.1 Introductory remarks on the MOVPE technique -- 3.2 Planetary reactors AIX2400G3 and AIX2800G4 -- 3.3 Precursors selected for the experimental work -- 3.4 Dopants and impurities incorporation -- 4 In-situ etching with CBr4 -- 4.1 Motivation for in-situ etching -- 4.2 Pre-existing research on in-situ etching -- 4.3 Investigation of CBr4 etching of GaAs -- 4.4 Investigation of CBr4 etching of GaAs assisted with TMGa and TMAl -- 4.5 CBr4 etching of AlGaAs and GaInP -- 5 SG-DBR tunable lasers -- 5.1 Chapter introduction -- 5.2 SG-DBR lasers -- 5.3 Thermally tuned SG-DBR lasers -- 5.4 Investigation of electronic tuning -- 6 Buried-mesa broad-area lasers -- 6.1 Chapter introduction -- 6.2 High-power lasers -- 6.3 Structure and process -- 6.4 Results and discussion -- 6.5 Chapter summary and conclusions -- 7 Lasers with buried implantation -- 7.1 Chapter introduction -- 7.2 Ion implantation -- 7.3 Device description and fabrication procedure -- 7.4 Material characterization -- 7.5 Characterization of as-cleaved devices -- 7.6 Characterization of coated and mounted devices -- 7.7 Step-stress tests -- 7.8 Chapter summary and conclusions -- 8 Summary and outlook -- A1 Zincblende III-V semiconductors and related properties -- A1.1 Appendix content -- A1.2 Composition, bonding and related properties -- A1.3 Crystal structure -- A1.4 Ternary and higher order compounds -- A1.5 Epitaxial multilayers: mismatch, strain, relaxation -- A1.6 Defects -- A1.7 Electronic structure and related properties -- A1.8 Carrier transport -- A1.9 Interband transitions -- A1.10 Optical properties in the transparency region. 327 $aA2 Some general aspects of III-V MOVPE -- A2.1 Different III-V epitaxy techniques -- A2.2 General considerations about MOVPE reactors -- A2.3 Precursors for the growth of arsenides and phosphides -- A2.4 Surface processes -- A2.5 Stoichiometry, composition and impurity control in MOVPE -- A3 Justification of the equations used in modeling the CBr4+TMAl etch -- A4 Model for the calculation of ?ip in the implanted sections -- Glossary -- References. 330 8 $aThis work is about two-step epitaxial growth using metalorganic vapor-phase epitaxy (MOVPE) for the realization of edge-emitting near-infrared laser diodes. The fabricated gallium arsenide-based devices fall into two categories: high-power lasers (watt range, multimodal) and tunable lasers (milliwatt range, monomodal). Common to both cases is that surface contamination - particularly that due to oxygen - needs to be removed before regrowth. Thus, in-situ etching with carbon tetrabromide (CBr4) is first studied. The experimental results include kinetic data, the effects of different etching conditions as well as substrate characteristics, and the effectiveness in reducing surface contamination.These investigations pave the way to devices based on 2-step epitaxy combined with in-situ etching. Correspondingly, thermally-tuned SG-DBR lasers operating around 975 nm have been successfully realized, obtaining a tuning range of 21 nm. In addition, the possibility of using electronic tuning in similar devices has been explored.High-power broad-area lasers have also been realized, using two-step epitaxy combined with ex-situ and in-situ etching, to create a buried, shallow "mesa" containing the active zone. This approach allows introducing lateral electrical and optical confinement, and - simultaneously - non-absorbing mirrors at the laser facets.Additionally, a different strategy to create a buried current aperture is presented, which is based on ion implantation followed by epitaxial regrowth. This enables to improve device performance and simultaneously introduce non-absorbing mirrors at the facets with correspondingly increased reliability. 410 0$aInnovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut fu?r Ho?chstfrequenztechnik 517 $aTwo-step MOVPE, in-situ etching and buried implantation 606 $aEtching 606 $aDiodes 615 0$aEtching. 615 0$aDiodes. 676 $a537.6226 700 $adella Casa$b Pietro$01872321 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911046723803321 996 $aTwo-step MOVPE, in-situ etching and buried implantation$94481445 997 $aUNINA