LEADER 01083nam a22002771i 4500 001 991003557349707536 005 20030904151123.0 008 031111s1979 gw |||||||||||||||||ger 020 $a353407372X 035 $ab12442823-39ule_inst 035 $aARCHE-047611$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a829.3 100 1 $aSchubel, Friedrich$0444616 245 10$aProbleme der Beowulf-Forschung /$cFriedrich Schubel 260 $aDarmstadt :$bWissenschaftliche Buchgesellschaft,$c1979 300 $aXIV, 188 p. ;$c20 cm 440 0$aErträge der Forschung ;$v122 650 4$aBeowulf 907 $a.b12442823$b02-04-14$c13-11-03 912 $a991003557349707536 945 $aLE012 F.G. 998$g1$i2012000065574$lle012$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12869144$z13-11-03 945 $aLE012 F.G. 998/A$g2$i2012000065666$lle012$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12869156$z13-11-03 996 $aProbleme der Beowulf-Forschung$9166290 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$fger$ggw $h0$i2 LEADER 03589nam 2200805 450 001 9910822673203321 005 20230607232340.0 010 $a3-11-094094-9 024 7 $a10.1515/9783110940947 035 $a(CKB)3390000000062279 035 $a(SSID)ssj0001522664 035 $a(PQKBManifestationID)12627760 035 $a(PQKBTitleCode)TC0001522664 035 $a(PQKBWorkID)11463336 035 $a(PQKB)10891103 035 $a(MiAaPQ)EBC3049558 035 $a(DE-B1597)57194 035 $a(OCoLC)1013964839 035 $a(OCoLC)900796297 035 $a(DE-B1597)9783110940947 035 $a(Au-PeEL)EBL3049558 035 $a(CaPaEBR)ebr11008932 035 $a(CaONFJC)MIL807157 035 $a(OCoLC)922950379 035 $a(EXLCZ)993390000000062279 100 $a20020723d2001 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntegral geometry and inverse problems for kinetic equations /$fA. Kh. Amirov 205 $aReprint 2014 210 1$aUtrecht ;$aBoston :$cVSP,$d2001. 215 $a1 online resource (209 pages) 225 1 $aInverse and ill-posed problems series,$x1381-4524 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-11-035469-1 311 $a90-6764-352-1 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tAbstract -- $tContents -- $tIntroduction -- $tChapter 1. Solvability of problems of integral geometry -- $tChapter 2. Inverse problems for kinetic equations -- $tChapter 3. Evolutionary equations -- $tChapter 4. Inverse problems for second order differential equations -- $tAppendix ?. -- $tBibliography 330 $aIn this monograph a method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated. Another considered subject is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included. 410 0$aInverse and ill-posed problems series. 606 $aIntegral geometry 606 $aInverse problems (Differential equations) 606 $aChemical kinetics$xMathematics 610 $aDifferential Equations. 610 $aDifferential Inequality. 610 $aDirichlet. 610 $aGoursat. 610 $aHyperbolic Equations. 610 $aIntegral Geometry Problems. 610 $aInverse Problems. 610 $aKinetic Equations. 610 $aMultidimensional. 610 $aParaboloids. 610 $aQuantum. 610 $aQuasilinear. 615 0$aIntegral geometry. 615 0$aInverse problems (Differential equations) 615 0$aChemical kinetics$xMathematics. 676 $a516.3/62 700 $aAmirov$b A. Kh$01690381 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822673203321 996 $aIntegral geometry and inverse problems for kinetic equations$94066039 997 $aUNINA