LEADER 03104nam a2200493 i 4500 001 991003554969707536 006 m o d 007 cr cn ---mpcbr 008 181009s2016 sz | ob 001 0 eng d 020 $a9783319410685 024 7 $a10.1007/978-3-319-41069-2$2doi 035 $ab14351390-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a519.2$223 084 $aAMS 60H15 084 $aAMS 35K57 084 $aAMS 35R60 084 $aAMS 76S05 084 $aLC QA274-274.9 100 1 $aBarbu, Viorel$013745 245 10$aStochastic Porous Media Equations$h[e-book] /$cby Viorel Barbu, Giuseppe Da Prato, Michael Röckner 260 $aCham :$bSpringer International Publishing,$c2016 300 $a1 online resource (ix, 202 p.) 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 347 $atext file$bPDF$2rda 490 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2163 504 $aIncludes bibliographical references and index 505 0 $aForeword ; Preface ; Introduction ; Equations with Lipschitz nonlinearities ; Equations with maximal monotone nonlinearities ; Variational approach to stochastic porous media equations ; L1-based approach to existence theory for stochastic porous media equations ; The stochastic porous media equations in Rd ; Transition semigroups and ergodicity of invariant measures ; Kolmogorov equations ; A Two analytical inequalities ; Bibliography ; Glossary ; Translator?s note ; Index 520 $aFocusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology 650 0$aDifferential equations, Partial 650 0$aProbabilities 650 0$aFluids 700 1 $aDa Prato, Giuseppe$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0314271 700 1 $aRo?ckner, Michael 773 0 $aSpringer eBooks 776 08$iPrinted edition:$z9783319410685 856 40$uhttps://link.springer.com/book/10.1007/978-3-319-41069-2$zAn electronic book accessible through the World Wide Web 907 $a.b14351390$b03-03-22$c09-10-18 912 $a991003554969707536 996 $aStochastic Porous Media Equations$91749134 997 $aUNISALENTO 998 $ale013$b09-10-18$cm$d@ $e-$feng$gsz $h0$i0