LEADER 03854nam a2200433 i 4500 001 991003554909707536 006 m o d 007 cr cn ---mpcbr 008 181008s2016 sz | o j |||| 0|eng d 020 $a9783319266381 024 7 $a10.1007/978-3-319-26638-1$2doi 035 $ab14351389-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.35$223 084 $aAMS 14K15 084 $aAMS 14G10 084 $aAMS 14G22 084 $aLC QA564-609 100 1 $aHalle, Lars Halvard$0721076 245 10$aNéron Models and Base Change$h[e-book] /$cby Lars Halvard Halle, Johannes Nicaise 260 $aCham :$bSpringer International Publishing,$c2016 300 $a1 online resource (x, 151 p.) 336 $atext$btxt$2rdacontent 337 $aunmediated$bn$2rdamedia 338 $avolume$bnc$2rdacarrier 490 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2156 505 0 $aNormal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Introduction ; Preliminaries ; Models of curves and the Neron component series of a Jacobian ; Component groups and non-archimedean uniformization ; The base change conductor and Edixhoven's ltration ; The base change conductor and the Artin conductor ; Motivic zeta functions of semi-abelian varieties ; Cohomological interpretation of the motivic zeta function. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} 520 $aPresenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven?s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry 650 0$aGeometry, Algebraic 650 0$aNumber theory 700 1 $aNicaise, Johannes$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0721075 773 0 $aSpringer eBooks 776 08$iPrinted edition:$z9783319266374 856 40$uhttps://link.springer.com/book/10.1007/978-3-319-26638-1#about$zAn electronic book accessible through the World Wide Web 907 $a.b14351389$b03-03-22$c08-10-18 912 $a991003554909707536 996 $aNéron models and base change$91412588 997 $aUNISALENTO 998 $ale013$b08-10-18$cm$d@ $e-$feng$gsz $h0$i0 LEADER 01403cam2 22003371 450 001 SOBE00050952 005 20250325074354.0 100 $a20160204d1978 |||||ita|0103 ba 101 $aita 102 $aIT 200 0 $a1: libri 1-2$fVirgilio$ga cura di Ettore Paratore$gtraduzione di Luca Canali 210 $aRoma$aMilano$cFondazione Lorenzo Valla$cA. Mondadori$d1978 215 $aLXXXIX, 371 p.$d21 cm 300 $aTesto latino a fronte. 461 1$1001SOBE00050954$12001 $aEneide / Virgilio ; a cura di Ettore Paratore ; traduzione di Luca Canali 700 1$aVergilius Maro$b, Publius$3AF00007040$4070$07260 702 1$aParatore, Ettore$3AF00014886$4070 702 1$aCanali, Luca$3AF00006957$4070 801 0$aIT$bUNISOB$c20250325$gRICA 850 $aUNISOB 852 $aUNISOB$j870$m47196 852 $aUNISOB$j870$m26481 852 $aUNISOB$j870$m34394 912 $aSOBE00050952 940 $aM 102 Monografia moderna SBN 941 $aW 957 $a870$b000944$i-1$gSI$d47196$racquisto$tO$1catenaccif$2UNISOB$3UNISOB$420160204114035.0$520160204114108.0$6catenaccif 957 $a870$b000944$i-1 b$gSI$d26481$racquisto$tO$1catenaccif$2UNISOB$3UNISOB$420160204121240.0$520160204121328.0$6catenaccif 957 $a870$b000944$i-1 c$gSI$d34394$racquisto$tO$1bethb$2UNISOB$3UNISOB$420250324162107.0$520250325074354.0$6bethb 996 $aLibri 1.-2$9974865 997 $aUNISOB