LEADER 03109cam a2200445 i 4500 001 991003531689707536 006 m o d 007 cr cnu|||unuuu 008 180807s2016 sz a ob 001 0 eng d 020 $a9783319290003 020 $a3319290002 024 7 $a10.1007/978-3-319-29000-3 035 $ab14348172-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515.243$223 084 $aAMS 40-02 084 $aLC QA295 100 1 $aDelabaere, Éric$0730101 245 10$aDivergent series, summability and resurgence III$h[e-book] :$bResurgent methods and the first Painlevé equation /$cEric Delabaere 246 30$aResurgent methods and the first Painlevé equation 264 1$aCham, Switzerland :$bSpringer,$c2016 300 $a1 online resource (xxii, 230 pages) :$billustrations (some color) 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 490 1 $aLecture notes in mathematics,$x0075-8434 ;$v2155 504 $aIncludes bibliographical references and index 505 0 $aAvant-Propos ; Preface to the three volumes ; Preface to this volume ; Some elements about ordinary differential equations ; The first Painlevé equation ; Tritruncated solutions for the first Painlevé equation ; A step beyond Borel-Laplace summability ; Transseries and formal integral for the first Painlevé equation ; Truncated solutions for the first Painlevé equation ; Supplements to resurgence theory ; Resurgent structure for the first Painlevé equation ; Index 520 $aThe aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called "bridge equation", which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1 650 0$aDivergent series 650 0$aSummability theory 650 0$aPainlevé equations 710 2 $aSpringerLink (Online service) 773 0 $aSpringer eBooks 856 40$uhttps://link.springer.com/book/10.1007/978-3-319-29000-3$zAn electronic book accessible through the World Wide Web 907 $a.b14348172$b03-03-22$c07-08-18 912 $a991003531689707536 996 $aDivergent series, summability and resurgence III$91748966 997 $aUNISALENTO 998 $ale013$b07-08-18$cm$d@ $e-$feng$gsz $h0$i0 LEADER 00953nam a22002531i 4500 001 991002305369707536 005 20030527132842.0 008 030925s1948 gr |||||||||||||||||gre 035 $ab12270441-39ule_inst 035 $aARCHE-031801$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a889 100 1 $aPapaioannos, M. M.$0453093 245 13$aHe threskeytikoteta toy A. Papadiamantes /$cM. M. Papaioannoy 260 $aAthena :$b[s.n.],$c1948 300 $a1 v. ;$c18 cm 440 0$aEtaria neoellenikon spoylon ;$v1 650 4$aPapadiamantes, Alexandros 907 $a.b12270441$b02-04-14$c08-10-03 912 $a991002305369707536 945 $aLE002 Busta A 32/9$g1$i2002000763297$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12661910$z08-10-03 996 $aThreskeytikoteta toy A. Papadiamantes$9152700 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$fgre$ggr $h3$i1