LEADER 00986nam a22002411i 4500 001 991003463039707536 005 20030822160608.0 008 031111s1974 sz |||||||||||||||||frm 035 $ab12430146-39ule_inst 035 $aARCHE-046343$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a842.1 245 03$aLe mystere de la passion Nostre Seigneur :$bdu manuscrit 1131 de la Bibliotheque Sainte-Genevieve /$cedite avec une introduction et des notes par Graham A. Runnall 260 $aGeneve :$bDroz,$c1974 300 $a305 p. ;$c18 cm 440 0$aTextes litteraires français 700 1 $aRunnalls, Graham A. 907 $a.b12430146$b02-04-14$c13-11-03 912 $a991003463039707536 945 $aLE012 F 358$g1$i2012000114784$lle012$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12854165$z13-11-03 996 $aMystere de la passion Nostre Seigneur$9166703 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$ffrm$gsz $h3$i1 LEADER 02096nam0 22005053i 450 001 VAN0249855 005 20230531121140.511 017 70$2N$a9783030441296 100 $a20220908d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aStatistical analysis of network data with R$fEric D. Kolaczyk, Gábor Csárdi 205 $a2. ed 210 $aCham$cSpringer$d2020 215 $axiv, 228 p.$cill.$d24 cm 410 1$1001VAN0102661$12001 $aUse R!$1210 $aBerlin [etc.]$cSpringer 500 1$3VAN0239877$aStatistical analysis of network data with R$91410698 606 $a62-XX$xStatistics [MSC 2020]$3VANC022998$2MF 606 $a62M45$xNeural nets and related approaches to inference from stochastic processes [MSC 2020]$3VANC026513$2MF 606 $a62R07$xStatistical aspects of big data and data science [MSC 2020]$3VANC026514$2MF 610 $aDynamic networks$9KW:K 610 $aGraph visualization$9KW:K 610 $aNetwork Flow Data$9KW:K 610 $aNetwork Graph$9KW:K 610 $aNetwork analysis$9KW:K 610 $aNetwork data$9KW:K 610 $aNetworked Experiments$9KW:K 610 $aR package$9KW:K 610 $aR software$9KW:K 610 $aStatic Networks$9KW:K 610 $aStatistical analysis$9KW:K 610 $aigraph$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aKolaczyk$bEric D.$3VANV080351$0472339 701 1$aCsárdi$bGábor$3VANV080352$0721692 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-44129-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0249855 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4861 $e08eMF4861 20220908 996 $aStatistical analysis of network data with R$91410698 997 $aUNICAMPANIA LEADER 01813nam2 22003733i 450 001 VAN0255538 005 20230524120444.134 017 70$2N$a9783540379843 100 $a20230302d1972 |0itac50 ba 101 $afre 102 $aDE 105 $a|||| ||||| 200 0 $a1. /$bun seminaire dirige par A. Grothendieck ; avec la collaboration de M. Raynaud et D. S. Rim] 210 $aBerlin$cSpringer$d1972 215 $avii, 523 p$d24 cm 461 1$1001VAN0255537$12001 $aGroupes de Monodromie en Géométrie Algébrique$e[seminaire de geometrie algebrique du Bois-Marie, 1967-1969$eSGA 7]$f[un seminaire dirige par A. Grothendieck$gavec la collaboration de M. Raynaud et D. S. Rim]$1210 $aBerlin$cSpringer$d1972-1973$1215 $a2 volumi$d24 cm$v1 606 $a14-XX$xAlgebraic geometry [MSC 2020]$3VANC019702$2MF 606 $a00B15$xCollections of articles of miscellaneous specific interest [MSC 2020]$3VANC023985$2MF 610 $aGeometry$9KW:K 610 $aGroups$9KW:K 620 $dBerlin$3VANL000066 702 1$aGrothendieck$bAlexandre$3VANV207645 702 1$aRaynaud$bMaurice$3VANV167282 702 1$aRim$bDock S.$3VANV208642 712 12$aSeminaire de geometrie algebrique$f7$f1967-69$eBois Marie$3VANV208643 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0068688$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0255538 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 5627 $e08eMF5627 20230313 996 $a1$961339 997 $aUNICAMPANIA