LEADER 02172nam a2200385 i 4500 001 991003409039707536 006 m o d 007 cr cnu|||unuuu 008 170808s2016 sz ob 001 0 eng d 020 $a9783319264370 020 $a3319264370 024 7 $a10.1007/978-3-319-26437-0 035 $ab14329293-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.62$223 084 $aAMS 13D02 100 1 $aEisenbud, David$057349 245 10$aMinimal free resolutions over complete intersections$h[e-book] /$cDavid Eisenbud, Irena Peeva 264 1$aCham :$bSpringer,$c2016 300 $a1 online resource (x, 107 pages) 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 490 1 $aLecture notes in mathematics,$x1617-9692 ;$v2152 504 $aIncludes bibliographical references and index 520 $aThis book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of the residue field by Tate in 1957. The theory extends the theory of matrix factorizations of a non-zero divisor, initiated by Eisenbud in 1980, which yields a description of the eventual structure of minimal free resolutions over a hypersurface ring. Matrix factorizations have had many other uses in a wide range of mathematical fields, from singularity theory to mathematical physics 650 0$aSyzygies (Mathematics) 650 0$aResolvents (Mathematics) 700 1 $aPeeva, Irena$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0502364 856 40$uhttps://link.springer.com/book/10.1007/978-3-319-26437-0$zAn electronic book accessible through the World Wide Web 907 $a.b14329293$b03-03-22$c08-08-17 912 $a991003409039707536 996 $aMinimal free resolutions over complete intersections$91413474 997 $aUNISALENTO 998 $ale013$b08-08-17$cm$d@ $e-$feng$gsz $h0$i0