LEADER 00727nam0-22002891i-450- 001 990001644930403321 005 20050415100155.0 035 $a000164493 035 $aFED01000164493 035 $a(Aleph)000164493FED01 035 $a000164493 100 $a20030910d1880----km-y0itay50------ba 101 0 $aita 200 1 $aAnalisi del vino$fMax Barth 210 $aMilano$cHoepli$d1880 215 $a141 p.$d15 cm 610 0 $aAlimenti$aAnalisi 610 0 $aVini 676 $a664.07 700 1$aBarth,$bMax$070724 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001644930403321 952 $a60 543.1 C 14$b1916$fFAGBC 959 $aFAGBC 996 $aAnalisi del vino$9372161 997 $aUNINA LEADER 01107nam a2200229 i 4500 001 991003382319707536 008 170608m20152016it m 000 0 eng d 035 $ab14325366-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 084 $aAMS 49Q20 100 1 $aDe Pascalis, Efrem$0476156 245 10$aTransport theory and application to the Beckmann problem. Tesi di laurea /$claureando Efrem De Pascalis ; relatore Diego Pallara 260 $aLecce :$bUniversità del Salento. Facoltà di Scienze MM. FF. NN. Corso di Laurea magistrale in Matematica,$ca.a. 2015-16 300 $a67 p. ;$c30 cm 650 0$aVariational problems in a geometric measure-theoretic setting 700 1 $aPallara, Diego 907 $a.b14325366$b31-07-17$c09-06-17 912 $a991003382319707536 945 $aLE013 TES 2015/16 DEP1$g1$i2013000228358$lle013$og$pE20.00$q-$rn$so $t0$u0$v0$w0$x0$y.i15815961$z31-07-17 996 $aTransport theory and application to the Beckmann problem. Tesi di laurea$91474122 997 $aUNISALENTO 998 $ale013$b08-06-17$cm$da $e-$feng$git $h0$i0