LEADER 02601nmm a2200445 i 4500 001 991003325579707536 007 cr cn ---mpcbr 008 170207s2014 sz | o j |||| 0|eng d 020 $a9783319024417 (ebook) 024 7 $a10.1007/978-3-319-02441-7$2doi 035 $ab14316250-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.36$223 084 $aAMS 53C55 084 $aAMS 32G07 084 $aAMS 32Q55 084 $aAMS 32Q60 084 $aAMS 53D18 084 $aLC QA3.L28 100 1 $aAngella, Daniele$0524797 245 10$aCohomological Aspects in Complex Non-Kähler Geometry$h[e-book] /$cby Daniele Angella 264 1$aCham :$bSpringer Intern. Publ.,$c2014 300 $a1 online resource 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 347 $atext file$bPDF$2rda 490 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2095 505 0 $aPreliminaries on (almost-) complex manifolds ; Cohomology of complex manifolds ; Cohomology of nilmanifolds ; Cohomology of almost-complex manifolds ; References 520 $aIn these notes, we provide a summary of recentresults on the cohomological properties of compact complex manifolds not endowed with a Kähler structure. On the one hand, the large number of developed analytic techniques makes it possible to prove strong cohomological properties for compact Kähler manifolds. On the other, in order to further investigate any of these properties, it is natural to look for manifolds that do not have any Kähler structure. We focus in particular on studying Bott-Chern and Aeppli cohomologies of compact complex manifolds. Several results concerning the computations of Dolbeault and Bott-Chern cohomologies on nilmanifolds are summarized, allowing readers to study explicit examples. Manifolds endowed with almost-complex structures, or with other special structures (such as, for example, symplectic, generalized-complex, etc.), are also considered 650 0$aDifferential equations, partial 650 0$aGlobal differential geometry 773 0 $aSpringer eBooks 776 08$aPrinted edition:$z9783319024400 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-02441-7$zAn electronic book accessible through the World Wide 907 $a.b14316250$b03-03-22$c07-02-17 912 $a991003325579707536 996 $aCohomological aspects in complex non-Kähler geometry$9820739 997 $aUNISALENTO 998 $ale013$b07-02-17$cm$d@ $e-$feng$gsz $h0$i0