LEADER 03473nam a2200433 i 4500 001 991003325249707536 008 170207s2014 sz a b 000 0 eng d 020 $a3319012991 (pbk.) 020 $a9783319012995 (pbk.) 035 $ab14316201-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a518.63$223 084 $aAMS 65-06 084 $aLC QA3.L28 111 2 $aC.I.M.E. Summer School$d<2011 ;$cCetraro, Italy>$0718981 245 10$aCurrent challenges in stability issues for numerical differential equations :$bCetraro, Italy 2011 /$c[with contributions by] Wolf-Jürgen Beyn ... [et al.] ; editors: Luca Dieci, Nicola Guglielmi 264 1$aCham [Switzerland] :$bSpringer,$cc2014 300 $aviii, 313 p. :$bill. (some color) ;$c24 cm 336 $atext$btxt$2rdacontent 337 $aunmediated$bn$2rdamedia 338 $avolume$bnc$2rdacarrier 490 1 $aLecture notes in mathematics,$x0075-8434 ;$v2082 500 $a"This volume is the outgrowth of lectures presented during the CIME-EMS Summer School on Applied Mathematics ... held in Cetraro (Italy) in June 2011". Page v 504 $aIncludes bibliographical references (pages 311-313) 505 00$tStudies on current challenges in stability issues for numerical differential equations /$rLuca Dieci, Nicola Guglielmi. Long-term stability of symmetric partitioned linear multistep methods /$rPaola Console and Ernst Hairer.$tMarkov chain Monte Carlo and numerical differential equations /$rJ.M. Sanz-Serna.$tStability and computation of dynamic patterns in PDEs /$rWolf-Jürgen Beyn, Denny Otten, and Jens Rottmann-Matthes.$tContinuous decompositions and coalescing eigenvalues for matrices depending on parameters /$rLuca Dieci ... [and 3 more].$tStability of linear problems: joint spectral radius of sets of matrices /$rNicola Guglielmi and Marino Zennaro 520 $aThis volume addresses some of the research areas in the general field of stability studies for differential equations, with emphasis on issues of concern for numerical studies. Topics considered include: (i) the long time integration of Hamiltonian Ordinary DEs and highly oscillatory systems, (ii) connection between stochastic DEs and geometric integration using the Markov chain Monte Carlo method, (iii) computation of dynamic patterns in evolutionary partial DEs, (iv) decomposition of matrices depending on parameters and localization of singularities, and (v) uniform stability analysis for time dependent linear initial value problems of ODEs. The problems considered in this volume are of interest to people working on numerical as well as qualitative aspects of differential equations, and it will serve both as a reference and as an entry point into further research 650 0$aDifferential equations 650 0$aMarkov processes 650 0$aDecomposition (Mathematics) 650 0$aHamiltonian systems 700 1 $aBeyn, Wolf-Jürgen$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0524896 700 1 $aDieci, Luca 700 1 $aGuglielmi, Nicola 907 $a.b14316201$b07-02-17$c07-02-17 912 $a991003325249707536 945 $aLE013 65-XX BEY11 (2014)$g1$i2013000294001$lle013$op$pE44.99$q-$rl$s- $t0$u1$v0$w1$x0$y.i15795925$z07-02-17 996 $aCurrent challenges in stability issues for numerical differential equations$91465390 997 $aUNISALENTO 998 $ale013$b07-02-17$cm$da $e-$feng$gsz $h0$i0