LEADER 02819nmm a2200421 i 4500 001 991003324949707536 007 cr cn ---mpcbr 008 170207s2014 sz | o j |||| 0|eng d 020 $a9783319022734 (ebook) 024 7 $a10.1007/978-3-319-02273-4$2doi 035 $ab14316171-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515.353$223 084 $aAMS 35L45 084 $aAMS 35L40 084 $aAMS 35L55 100 1 $aNishitani, Tatsuo$059540 245 10$aHyperbolic Systems with Analytic Coefficients$h[e-book] :$bWell-posedness of the Cauchy Problem /$cby Tatsuo Nishitani 260 $aCham :$bSpringer Intern. Publ.,$c2014 300 $a1 online resource (viii, 237 p.) 336 $atext$btxt$2rdacontent 337 $acomputer$bc$2rdamedia 338 $aonline resource$bcr$2rdacarrier 347 $atext file$bPDF$2rda 490 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2097 505 0 $aIntroduction ; Necessary conditions for strong hyperbolicity ; Two by two systems with two independent variables ; Systems with nondegenerate characteristics ; Index 520 $aThis monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed: (A) Under which conditions on lower order terms is the Cauchy problem well posed? (B) When is the Cauchy problem well posed for any lower order term? For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contains strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of multiple order has a nondegenerate characteristic of the same order nearby 650 0$aDifferential equations, partial 650 0$aMathematical physics 710 2 $aSpringerLink (Online service) 773 0 $aSpringer eBooks. 776 08$aPrinted edition:$z9783319022727. 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-02273-4$zAn electronic book accessible through the World Wide 907 $a.b14316171$b03-03-22$c07-02-17 912 $a991003324949707536 996 $aHyperbolic systems with analytic coefficients$9820703 997 $aUNISALENTO 998 $ale013$b07-02-17$cm$d@ $e-$feng$gsz $h0$i0 LEADER 01620nam 2200517 450 001 9910790858403321 005 20230803022423.0 010 $a0-8093-3312-0 035 $a(CKB)2550000001162051 035 $a(OCoLC)864414481 035 $a(MdBmJHUP)muse32721 035 $a(SSID)ssj0001171289 035 $a(PQKBManifestationID)11678341 035 $a(PQKBTitleCode)TC0001171289 035 $a(PQKBWorkID)11175925 035 $a(PQKB)10155660 035 $a(MiAaPQ)EBC1550754 035 $a(Au-PeEL)EBL1550754 035 $a(CaPaEBR)ebr10807906 035 $a(CaONFJC)MIL545052 035 $a(EXLCZ)992550000001162051 100 $a20131211d2013 uy 0 101 0 $aeng 135 $aur|||||||nn|n 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aWorks about John Dewey, 1886-2012 /$fcompiled and edited by Barbara Levine ; foreword by Larry A. Hickman 205 $aSecond edition. 210 1$a[Carbondale, Illinois] :$c[Southern Illinois University Press],$d2013. 210 4$dİ2013 215 $a1 online resource (pages cm) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-306-13801-9 320 $aIncludes bibliographical references. 410 0$aUPCC book collections on Project MUSE. 676 $a016.191 701 $aLevine$b Barbara$f1937-$01464685 701 $aHickman$b Larry A.$f1942-$0162423 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910790858403321 996 $aWorks about John Dewey, 1886-2012$93674448 997 $aUNINA