LEADER 01163nam a2200277 i 4500 001 991003305639707536 008 161121s2010 fr b 000 0 fre d 020 $a9782256911590 035 $ab14312931-39ule_inst 040 $aDip. di Studi Umanistici$bita 082 14$a809 245 00$aRéceptions et usages de l'?uvre de Roussel /$ctextes présentés par Hermes Salceda 260 $aCaen :$bLettres modernes Minard,$c2010 300 $a280 p. :$bill. ;$c20 cm 440 3$aLa Revue des lettres modernes.$aRaymond Roussel ;$v4 504 $aContiene riferimenti bibliografici 504 $aBibliografia: p. 267-270 600 10$aRoussel, Raymond,$d1877-1933$xCriticism and interpretation. 700 1 $aSalceda, Hermes$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0785197 700 1 $aReggiani, Christelle 907 $a.b14312931$b21-11-16$c21-11-16 912 $a991003305639707536 945 $aLE012 848.91 ROU SAL$g1$i2007000277348$lle012$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15788568$z21-11-16 996 $aRéceptions et usages de l'?uvre de Roussel$91748055 997 $aUNISALENTO 998 $ale012$b21-11-16$cm$da $e-$ffre$gfr $h3$i0 LEADER 05566nam 2200673Ia 450 001 9910782117403321 005 20230617040941.0 010 $a1-281-93546-8 010 $a9786611935467 010 $a981-279-499-9 035 $a(CKB)1000000000537813 035 $a(EBL)1223606 035 $a(SSID)ssj0000290724 035 $a(PQKBManifestationID)11211138 035 $a(PQKBTitleCode)TC0000290724 035 $a(PQKBWorkID)10230603 035 $a(PQKB)10843223 035 $a(WSP)00005374 035 $a(Au-PeEL)EBL1223606 035 $a(CaPaEBR)ebr10255903 035 $a(CaONFJC)MIL193546 035 $a(OCoLC)853361888 035 $a(MiAaPQ)EBC1223606 035 $a(EXLCZ)991000000000537813 100 $a20030826d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe calculus of variations and functional analysis$b[electronic resource] $ewith optimal control and applications in mechanics /$fLeonid P. Lebedev, Michael J. Cloud 210 $aSingapore ;$aRiver Edge, N.J. $cWorld Scientific$dc2003 215 $a1 online resource (435 p.) 225 1 $aSeries on stability, vibration, and control of systems. Series A ;$vv. 12 300 $aDescription based upon print version of record. 311 $a981-238-581-9 320 $aIncludes bibliographical references (p. 415-416) and index. 327 $aForeword; Preface; Contents; 1. Basic Calculus of Variations; 1.1 Introduction; 1.2 Euler's Equation for the Simplest Problem; 1.3 Some Properties of Extremals of the Simplest Functional; 1.4 Ritz's Method; 1.5 Natural Boundary Conditions; 1.6 Some Extensions to More General Functionals; 1.7 Functionals Depending on Functions in Many Variables; 1.8 A Functional with Integrand Depending on Partial Derivatives of Higher Order; 1.9 The First Variation; 1.10 Isoperimetric Problems; 1.11 General Form of the First Variation; 1.12 Movable Ends of Extremals 327 $a1.13 Weierstrass-Erdmann Conditions and Related Problems1.14 Sufficient Conditions for Minimum; 1.15 Exercises; 2. Elements of Optimal Control Theory; 2.1 A Variational Problem as a Problem of Optimal Control; 2.2 General Problem of Optimal Control; 2.3 Simplest Problem of Optimal Control; 2.4 Fundamental Solution of a Linear Ordinary Differential Equation; 2.5 The Simplest Problem Continued; 2.6 Pontryagin's Maximum Principle for the Simplest Problem; 2.7 Some Mathematical Preliminaries; 2.8 General Terminal Control Problem; 2.9 Pontryagin's Maximum Principle for the Terminal Optimal Problem 327 $a2.10 Generalization of the Terminal Control Problem2.11 Small Variations of Control Function for Terminal Control Problem; 2.12 A Discrete Version of Small Variations of Control Function for Generalized Terminal Control Problem; 2.13 Optimal Time Control Problems; 2.14 Final Remarks on Control Problems; 2.15 Exercises; 3. Functional Analysis; 3.1 A Normed Space as a Metric Space; 3.2 Dimension of a Linear Space and Separability; 3.3 Cauchy Sequences and Banach Spaces; 3.4 The Completion Theorem; 3.5 Contraction Mapping Principle; 3.6 Lp Spaces and the Lebesgue Integral; 3.7 Sobolev Spaces 327 $a3.8 Compactness3.9 Inner Product Spaces Hilbert Spaces; 3.10 Some Energy Spaces in Mechanics; 3.11 Operators and Functional; 3.12 Some Approximation Theory; 3.13 Orthogonal Decomposition of a Hilbert Space and the Riesz Representation Theorem; 3.14 Basis Gram-Schmidt Procedure Fourier Series in Hilbert Space; 3.15 Weak Convergence; 3.16 Adjoint and Self-adjoint Operators; 3.17 Compact Operators; 3.18 Closed Operators; 3.19 Introduction to Spectral Concepts; 3.20 The Fredholm Theory in Hilbert Spaces; 3.21 Exercises; 4. Some Applications in Mechanics 327 $a4.1 Some Problems of Mechanics from the Viewpoint of the Calculus of Variations the Virtual Work Principle; 4.2 Equilibrium Problem for a Clamped Membrane and its Generalized Solution; 4.3 Equilibrium of a Free Membrane; 4.4 Some Other Problems of Equilibrium of Linear Mechanics; 4.5 The Ritz and Bubnov-Galerkin Methods; 4.6 The Hamilton-Ostrogradskij Principle and the Generalized Setup of Dynamical Problems of Classical Mechanics; 4.7 Generalized Setup of Dynamic Problems for a Membrane; 4.8 Other Dynamic Problems of Linear Mechanics; 4.9 The Fourier Method 327 $a4.10 An Eigenfrequency Boundary Value Problem Arising in Linear Mechanics 330 $aThis is a book for those who want to understand the main ideas in the theory of optimal problems. It provides a good introduction to classical topics (under the heading of "the calculus of variations") and more modern topics (under the heading of "optimal control"). It employs the language and terminology of functional analysis to discuss and justify the setup of problems that are of great importance in applications. The book is concise and self-contained, and should be suitable for readers with a standard undergraduate background in engineering mathematics. 410 0$aSeries on stability, vibration, and control of systems.$nSeries A ;$vv. 12. 606 $aFunctional analysis 606 $aMechanics 615 0$aFunctional analysis. 615 0$aMechanics. 676 $a515.7 700 $aLebedev$b L. P$01089225 701 $aCloud$b Michael J$041158 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782117403321 996 $aThe calculus of variations and functional analysis$93692686 997 $aUNINA