LEADER 01173nam0-22004091i-450- 001 990002553140403321 005 20101123202053.0 010 $a0-412-49120-6 035 $a000255314 035 $aFED01000255314 035 $a(Aleph)000255314FED01 035 $a000255314 100 $a20101123d1994----km-y0itay50------ba 101 0 $aeng 102 $aGB 200 1 $aMultidimensional scaling$fTrevor F. Cox, Michael A.A. Cox 210 $aLondon$cChapman & Hall$d1994 215 $ax, 213 p.$d22 cm 225 1 $aMonographs on statistics and applied probability$v59 610 0 $aAnalisi multivariata e multidimensionale dei dati 610 0 $aClassificazione 610 0 $aStatistica 610 0 $aAnalisi multivariata 676 $a519.535 700 1$aCox,$bTrevor F.$0104019 701 1$aCox,$bMichael A.A.$089078 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002553140403321 952 $aXII-D-43$b2931$fMAS 952 $a62 311 COX$bDEPA 7361$fDAGEA 952 $aVI E 317 (59)$b24336$fFSPBC 959 $aMAS 959 $aDAGEA 959 $aFSPBC 996 $aMultidimensional scaling$9437268 997 $aUNINA LEADER 00965nam a22002411i 4500 001 991000061389707536 005 20020907081418.0 008 020907s1983 uika||||||||||||||||eng 035 $ab11953524-39ule_inst 035 $aARCHE-004333$9ExL 040 $aDip.to Filologia Ling. e Lett.$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 100 1 $aChamberlain, Mary$0218963 245 10$aFenwomen :$ba portrait of women in an English village /$cMary Chamberlain 260 $aLondon ;$aBoston :$bRoutledge & Kegan Paul,$c1983 300 $a186 p., [16] leaves of plates :$bill. ;$c22 cm 490 0$aHistory workshop series 650 4$aDonna$xEducazione 907 $a.b11953524$b28-04-17$c01-04-03 912 $a991000061389707536 945 $aLE008 FL.M. (IN) H 64$g1$iLE008A-03983$lle008$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12229805$z01-04-03 996 $aFenwomen$9602495 997 $aUNISALENTO 998 $ale008$b01-04-03$cm$da $e-$feng$guik$h0$i1 LEADER 02912nam a2200397 i 4500 001 991003265909707536 006 m o d 007 cr cnu|||||||| 008 160801t2015 sz ob 001 0 eng d 020 $a9783319194943 035 $ab1430580x-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.4$223 084 $aAMS 13-02 084 $aAMS 03F65 084 $aAMS 13C10 084 $aAMS 13D02 084 $aAMS 13P10 084 $aLC QA251.3.Y46 100 1 $aYengui, Ihsen$0718166 245 10$aConstructive commutative algebra$h[e-book] :$bprojective modules over polynomial rings and dynamical Gröbner bases /$cIhsen Yengui 260 $aCham [Switzerland] :$bSpringer,$c[2014] 300 $a1 online resource (vii, 271 pages) 440 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2138 504 $aIncludes bibliographical references (pages 259-268) and index 505 0 $aProjective modules over polynomial rings ; Dynamical Gröbner bases ; Syzygies in polynomial rings over valuation domains ; Exercises ; Detailed solutions to the exercises 520 $aThe main goal of this book is to find the constructive content hidden in abstract proofs of concrete theorems in Commutative Algebra, especially in well-known theorems concerning projective modules over polynomial rings (mainly the Quillen-Suslin theorem) and syzygies of multivariate polynomials with coefficients in a valuation ring. Simple and constructive proofs of some results in the theory of projective modules over polynomial rings are also given, and light is cast upon recent progress on the Hermite ring and Gröbner ring conjectures. New conjectures on unimodular completion arising from our constructive approach to the unimodular completion problem are presented. Constructive algebra can be understood as a first preprocessing step for computer algebra that leads to the discovery of general algorithms, even if they are sometimes not efficient. From a logical point of view, the dynamical evaluation gives a constructive substitute for two highly nonconstructive tools of abstract algebra: the Law of Excluded Middle and Zorn's Lemma. For instance, these tools are required in order to construct the complete prime factorization of an ideal in a Dedekind ring, whereas the dynamical method reveals the computational content of this construction. These lecture notes follow this dynamical philosophy 650 0$aCommutative algebra 650 0$aGröbner bases 650 0$aPolynomial rings 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-19494-3$zAn electronic book accessible through the World Wide Web 907 $a.b1430580x$b03-03-22$c01-08-16 912 $a991003265909707536 996 $aConstructive commutative algebra$91392311 997 $aUNISALENTO 998 $ale013$b01-08-16$cm$d@ $e-$feng$gsz $h0$i0