LEADER 02460nam a2200385 i 4500 001 991003265819707536 006 m o d 007 cr cnu 008 160801s2014 sz | o |||| 0|eng d 020 $a9783319081533 035 $ab14305793-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.66$223 084 $aAMS 20H15 084 $aAMS 19A31 084 $aAMS 19B28 084 $aAMS 82D25 084 $aLC QA612.33 100 1 $aFarley, Daniel Scott$0716393 245 10$aAlgebraic K-theory of crystallographic groups$h[e-book] :$bthe three-dimensional splitting case /$cby Daniel Scott Farley, Ivonne Johanna Ortiz 260 $aCham [Switzerland] :$bSpringer,$c2014 300 $a1 online resource (x, 148 pages) 440 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2113 520 $aThe Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field 650 0$aGroup theory 650 0$aK-theory 650 0$aCell aggregation$xMathematics 700 1 $aOrtiz, Ivonne Johanna$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0721507 776 08$aPrinted edition:$z9783319081526 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-08153-3$zAn electronic book accessible through the World Wide Web 907 $a.b14305793$b03-03-22$c01-08-16 912 $a991003265819707536 996 $aAlgebraic K-theory of crystallographic groups$91465287 997 $aUNISALENTO 998 $ale013$b01-08-16$cm$d@ $e-$feng$gsz $h0$i0 LEADER 01054nam a2200277 i 4500 001 991001039149707536 005 20020507105508.0 008 960503s1950 us ||| | eng 035 $ab10164947-39ule_inst 035 $aLE00641115$9ExL 040 $aDip.to Fisica$bita 084 $a510(083) 084 $a510.33 084 $a517.36 084 $aQA343 100 1 $aMilnethomson, L.$0462592 245 10$aJacobian elliptic function tables :$ba guide to practical computation with elliptic functions and integral togheter with tables of SN U, CN U, DN U, Z U /$cL. Milnethomson 260 $aNew York :$bDover Publications, Inc.,$c1950 300 $axi, 132 p. :$bill. ;$c20 cm. 650 4$aFunctions (Mathematics) 907 $a.b10164947$b21-09-06$c27-06-02 912 $a991001039149707536 945 $aLE006 510(083) MIL$g1$i2006000019569$lle006$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1020071x$z27-06-02 996 $aJacobian elliptic function tables$9188913 997 $aUNISALENTO 998 $ale006$b01-01-96$cm$da $e-$feng$gus $h0$i1