LEADER 00759nam0-22002891i-450- 001 990007052070403321 005 20020227 035 $a000705207 035 $aFED01000705207 035 $a(Aleph)000705207FED01 035 $a000705207 100 $a20020227d1873----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay-------001yy 200 1 $aEntwurf einer Rechts Entwicklung$fHanns Gross 210 $aGraz$cLeykam Josefsthal$d1873 215 $a40 p.$d24 cm 676 $a340.1$v20$zita 700 1$aGross,$bHanns$0168698 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990007052070403321 952 $aXI B 61$b11247$fFGBC 959 $aFGBC 996 $aEntwurf einer Rechts-Entwicklung$9707770 997 $aUNINA LEADER 01825nam a2200361 a 4500 001 991003265549707536 006 m o d 007 cr cnu|||unuuu 008 160801s2014 sz 001 0 eng d 020 $a9783319070346 035 $ab14305744-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a514.23$223 084 $aAMS 53C08 084 $aAMS 55N20 084 $aLC QA3.L28 100 1 $aBär, Christian$0718154 245 10$aDifferential characters$h[e-book] /$c Christian Bär, Christian Becker 260 $aCham [Switzerland] :$bSpringer,$c2014 300 $a1 online resource (viii, 187 pages) 440 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2112 505 0 $aDifferential characters and geometric chains ; Relative differential cohomology 520 $aProviding a systematic introduction to differential characters as introduced by Cheeger and Simons, this text describes important concepts such as fiber integration, higher dimensional holonomy, transgression, and the product structure in a geometric manner. Differential characters form a model of what is nowadays called differential cohomology, which is the mathematical structure behind the higher gauge theories in physics 650 0$aAlgebraic topology 650 0$aGlobal differential geometry 700 1 $aBecker, Christian$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0241346 776 08$aPrinted edition:$z9783319070339 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-07034-6$zAn electronic book accessible through the World Wide Web 907 $a.b14305744$b03-03-22$c01-08-16 912 $a991003265549707536 996 $aDifferential characters$91410788 997 $aUNISALENTO 998 $ale013$b01-08-16$cm$d@ $e-$feng$gsz $h0$i0