LEADER 02791nam a2200373 i 4500 001 991003263669707536 008 160728t20142014sz a b 001 0 eng d 020 $a9783319031514 035 $ab14305434-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a519.2$223 084 $aAMS 60G50 084 $aAMS 05C81 084 $aAMS 31C20 084 $aAMS 35K08 084 $aLC QA274.73 100 1 $aKumagai, Takashi$0525017 245 10$aRandom walks on disordered media and their scaling limits :$bÉcole d'Été de Probabilités de Saint-Flour XL - 2010 /$cTakashi Kumagai 246 30$aÉcole d'Été de Probabilités de Saint-Flour XL-2010 260 $aCham [Switzerland] :$bSpringer,$cc2014 300 $ax, 147 p. :$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2101 504 $aIncludes bibliographical references (pages 135-143) and index 505 0 $aIntroduction ; Weighted graphs and the associated Markov chains ; Heat kernel estimates general theory ; Heat kernel estimates using effective resistance ; Heat kernel estimates for random weighted graphs ; Alexander-Orbach conjecture holds when two-point functions behave nicely ; Further results for random walk on IIC ; Random conductance model 520 $aIn these lecture notes, we will analyze the behavior of random walk on disordered mediaby means ofboth probabilistic and analytic methods, and will study the scalinglimits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media.Thefirst few chapters of the notes can be used as an introduction to discrete potential theory. Recently, there has beensignificantprogress on thetheoryof random walkon disordered media such as fractals and random media.Random walk on a percolation cluster('the ant in the labyrinth')is one of the typical examples. In 1986, H. Kesten showedtheanomalous behavior of a random walk on a percolation cluster at critical probability. Partly motivated by this work, analysis and diffusion processes on fractals have been developed since the late eighties. As a result, various new methods have been produced to estimate heat kernels on disordered media. These developments are summarized in the notes 650 0$aRandom walks 650 0$aPotential theory (Mathematics) 650 0$aDistribution (Probability theory) 907 $a.b14305434$b25-11-16$c28-07-16 912 $a991003263669707536 945 $aLE013 60G KUM11 (2014)$g1$i2013000293431$lle013$op$pE36.39$q-$rl$s- $t0$u0$v0$w0$x0$y.i15786985$z11-11-16 996 $aRandom walks on disordered media and their scaling limits$91392288 997 $aUNISALENTO 998 $ale013$b28-07-16$cm$da $e-$feng$gsz $h0$i0