LEADER 01885nam a2200337 i 4500 001 991003263299707536 008 160728s2014 sz a b 001 0 eng d 020 $a9783319064765 035 $ab14305380-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.2$223 084 $aAMS 20E42 084 $aAMS 20G30 084 $aAMS 57Qxx 084 $aLC QA3.L38 100 1 $aWitzel, Stefan$0718153 245 10$aFiniteness properties of arithmetic groups acting on twin buildings /$cStefan Witzel 260 $aCham [Switzerland] :$bSpringer,$cc2014 300 $axvi, 113 p. :$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2109 504 $aIncludes bibliographical references (pages 101-105) and index 505 0 $aBasic definitions and properties ; Finiteness properties of G(Fq[t]) ; Finiteness properties of G(Fq[t, t-1]) ; Adding places 520 $a"Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings."--Page 4 of cover 650 0$aBuildings (Group theory) 650 0$aFinite geometries 907 $a.b14305380$b17-11-16$c28-07-16 912 $a991003263299707536 945 $aLE013 20E WIT11 (2014)$g1$i2013000293523$lle013$op$pE36.39$q-$rl$s- $t0$u1$v0$w1$x0$y.i15787436$z17-11-16 996 $aFiniteness properties of arithmetic groups acting on twin buildings$91392283 997 $aUNISALENTO 998 $ale013$b28-07-16$cm$da $e-$feng$gsz $h0$i0