LEADER 03896nam a2200361Ii 4500 001 991003242949707536 008 070806s2003 enka sb 001 0 eng d 020 $a9781903996379 020 $a1903996376 035 $ab13654263-39ule_inst 040 $aBibl. Dip.le Aggr. Ingegneria Innovazione - Sez. Ingegneria Innovazione$beng 082 04$a624.1$222 100 1 $aMotro, René,$d1946-$0596330 245 10$aTensegrity$h[e-book] :$bstructural systems for the future /$cRené Motro 260 $aLondon ;$aSterling, VA :$bKogan Page Science,$c2003 300 $axvii, 238 p. :$bill. ;$c24 cm 504 $aIncludes bibliographical references (p. [228]-236) and index 505 0 $a1. Introduction -- 2. History and definitions -- 2-1. Introduction; 2-2. History; 2-3. Definitions; 2-4. Conclusion -- 3. Fundamental concepts -- 3-1. Introduction; 3-2. Relational structure; 3-3. Geometry and stability; 3-4. Selfstress states and mechanisms; 3-5. Conclusion -- 4. Typologies -- 4-1. Introduction; 4-2. Typology criteria and codification; 4-3. Elementary cells or spherical cells; 4-4. Assemblies of cells; 4-5. Conclusion -- 5. Models -- 5-1. Introduction; 5-2. Problems to solve; 5-3. Form finding; 5-4. Selfstress and mechanisms; 5-5. Selftress qualification; 5-6. Designing tensegrity systems; 5-7. Active control; 5-8. Conclusion -- 6. Foldable tensegrities -- 6-1. Introduction; 6-2. Folding principle; 6-3. Foldable modules; 6-4. Foldable assemblies; 6-5. Folding design; 6-6. Simulation of the folding process; 6-7. Modelling the contact of two struts; 6-8. Conclusion -- 7. Tensegrity: Latest And future developments -- 7-1. Introduction; 7-2. New tensegrity grids; 7-3. Other projects; 7-4. Tensegrity as a structural principle; 7-5. Conclusion -- 8. Bibliography -- 9. Appendices 520 $aThe word tensegrity results from the contraction of tensional and integrity, a word created by Richard Buckminster Fuller. He went on to describe tensegrity structures as islands of compression in an ocean of tension, and Re? Motro has developed a comprehensive definition which is systems in a stable self equilibriated system comprising a discontinuous set of compressed components inside a continuum of tensioned components. This publication represents the life work of a leading exponent of a revolutionary and exciting method of structural design. * Represents the life work of a leading exponent of a revolutionary and exciting method of structural design * Applicable to architecture as an established structural system, can also be applied to other fields * Design professionals will be able to design better structures. Interested non-professionals will experience the great pleasure of being able to say "I understand why the Hisshorn tower stands up" 533 $aElectronic reproduction.$bAmsterdam :$cElsevier Science & Technology,$d2007.$nMode of access: World Wide Web.$nSystem requirements: Web browser.$nTitle from title screen (viewed on Aug. 2, 2007).$nAccess may be restricted to users at subscribing institutions 650 0$aGeodesic domes 650 0$aStructural analysis (Engineering) 655 7$aElectronic books.$2local 776 1 $cOriginal$z1903996376$z9781903996379$w(DLC) 2003007305$w(OCoLC)53325359 856 40$3Referex$uhttp://www.sciencedirect.com/science/book/9781903996379$zAn electronic book accessible through the World Wide Web; click for information 856 41$zTable of contents only$uhttp://catdir.loc.gov/catdir/toc/ecip042/2003007305.html 856 42$zBook review (E-STREAMS)$uhttp://www.e-streams.com/es0805/es0805%5F4106.html 856 42$zPublisher description$uhttp://catdir.loc.gov/catdir/enhancements/fy0614/2003007305-d.html 907 $a.b13654263$b03-03-22$c24-01-08 912 $a991003242949707536 996 $aTensegrity$9990831 997 $aUNISALENTO 998 $ale026$b24-01-08$cm$d@ $e-$feng$genk$h0$i0