LEADER 03118nam 2200685Ia 450 001 9910140803203321 005 20170816113633.0 010 $a0-470-90632-4 010 $a1-282-77355-0 010 $a9786612773556 010 $a1-118-26791-5 010 $a0-470-90630-8 035 $a(CKB)2670000000044741 035 $a(EBL)573729 035 $a(OCoLC)668193970 035 $a(SSID)ssj0000441183 035 $a(PQKBManifestationID)11296748 035 $a(PQKBTitleCode)TC0000441183 035 $a(PQKBWorkID)10405154 035 $a(PQKB)10431169 035 $a(MiAaPQ)EBC573729 035 $a(CaSebORM)9780470400937 035 $a(EXLCZ)992670000000044741 100 $a20100624d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aProbability and statistics for finance$b[electronic resource] /$fSvetlozar T. Rachev ... [et al.] 205 $a1st edition 210 $aHoboken, NJ $cWiley$d2010 215 $a1 online resource (675 p.) 225 1 $aThe Frank J. Fabozzi series ;$v176 300 $aDescription based upon print version of record. 311 $a0-470-40093-5 320 $aIncludes bibliographical references and index. 327 $aProbability and Statistics for Finance; Contents; Preface; About the Authors; Chapter 1: Introduction; Part One: Descriptive Statistics; Part Two: Basic Probability Theory; Part Three: Inductive Statistics; Part Four: Multivariate Linear Regression Analysis; Appendix A: Important Functions and Their Features; Appendix B: Fundamentals of Matrix Operations and Concepts; Appendix C: Binomial and Multinomial Coefficients; Appendix D: Application of the Log-Normal Distribution to the Pricing of Call Options; References; Index 330 $aA comprehensive look at how probability and statistics is applied to the investment process Finance has become increasingly more quantitative, drawing on techniques in probability and statistics that many finance practitioners have not had exposure to before. In order to keep up, you need a firm understanding of this discipline.Probability and Statistics for Finance addresses this issue by showing you how to apply quantitative methods to portfolios, and in all matter of your practices, in a clear, concise manner. Informative and accessible, this guide starts off with the bas 410 0$aFrank J. Fabozzi series ;$v176. 606 $aFinance$xStatistical methods 606 $aStatistics 606 $aProbability measures 606 $aMultivariate analysis 608 $aElectronic books. 615 0$aFinance$xStatistical methods. 615 0$aStatistics. 615 0$aProbability measures. 615 0$aMultivariate analysis. 676 $a332.01/5195 676 $a332.015195 700 $aCFA$b Frank$0993151 701 $aRachev$b S. T$g(Svetlozar Todorov)$059738 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910140803203321 996 $aProbability and statistics for finance$92274139 997 $aUNINA LEADER 01765cam a22003137i 4500 001 991003239569707536 005 20250430130201.0 008 950111s1734 it af b 000 0 lat d 035 $ab14302160-39ule_inst 035 $aCICOGNARA-A2013-0378$9ExL 040 $aBibl. Interfacoltà T. Pellegrino$bita 100 1 $aMaffei, Scipione,$cmarchese$d<1675-1755>$0135203 245 10$aGalliae antiquitates quaedam selectae atque in plures epistolas distributae, ad Parisinum exemplar iterum editae.$bAccedunt Epistolae duae, altera Sorbonicorum doctorum ad auctorem hujus operis, altera march. Joannis Polenii de Olympico theatro. 260 $aVeronae :$bper Jacobum Vallarsium,$c1734. 300 $a[4], xii, [2], 208, [4] p., 2 c. di tav. :$bill.; $c4° (29 cm). 500 $aLa formulazione dell'A. si ricava dalla dedica. 500 $aFront. in rosso e nero, con incisione. 500 $aFrontoni, iniziali, finali. 500 $aIncisioni calcografiche. 500 $aRiproduzione in microfiche dell'originale conservato presso la Biblioteca Apostolica Vaticana 700 1 $aPoleni, Giovanni,$cmarchese$d<1683-1761> 787 18$iLeopoldo Cicognara Program :$tBiblioteca Cicognara$h[microform] : literary sources in the history of art and kindred subjects 787 18$tCatalogo ragionato dei libri d'arte e d'antichità / Leopoldo Cicognara 907 $a.b14302160$b01-04-22$c28-07-16 912 $a991003239569707536 945 $aLE002 SB Raccolta Cicognara, mcrf 4035A$g0$lle002$pE0.00$rn$so $t11$u0$v0$w0$x0$y.i15773711$z28-07-16 996 $aGalliae antiquitates quaedam selectae atque in plures epistolas distributae. ad Parisinum exemplar iterum editae$91389704 997 $aUNISALENTO 998 $ale002$b28-07-16$cm$dg $e-$flat$git $h0$i1