LEADER 01045nam a22002651i 4500 001 991003038019707536 005 20040518160031.0 008 040624s1941 xxua||||||||||||||||eng 035 $ab13014869-39ule_inst 035 $aARCHE-097254$9ExL 040 $aDip.to Beni Culturali$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a725 100 1 $aScranton, Robert Lorentz$033123 245 10$aGreek walls /$cby Robert Lorentz Scranton ; published for the American school of classical studies at Athens 260 $aCambridge :$bHarvard University Press,$c1941 300 $aXVI, 194 p. :$bill. ;$c26 cm 650 4$aArchitettura militare 651 4$aGrecia antica$xFortificazioni 651 4$aGrecia antica$xMura 907 $a.b13014869$b02-04-14$c12-07-04 912 $a991003038019707536 945 $aLE001 AR II 43 8$g1$i2001000101931$lle001$nC. 1$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13627004$z12-07-04 996 $aGreek walls$9223407 997 $aUNISALENTO 998 $ale001$b12-07-04$cm$da $e-$feng$gxxu$h0$i1 LEADER 05212nam 22006375 450 001 9910789344903321 005 20200704062140.0 010 $a1-4471-0597-4 024 7 $a10.1007/978-1-4471-0597-8 035 $a(CKB)3400000000088221 035 $a(SSID)ssj0000809000 035 $a(PQKBManifestationID)11446728 035 $a(PQKBTitleCode)TC0000809000 035 $a(PQKBWorkID)10800131 035 $a(PQKB)10545448 035 $a(DE-He213)978-1-4471-0597-8 035 $a(MiAaPQ)EBC3073487 035 $a(PPN)237989867 035 $a(EXLCZ)993400000000088221 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aVector Calculus$b[electronic resource] /$fby Paul C. Matthews 205 $a1st ed. 1998. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d1998. 215 $a1 online resource (X, 182 p. 1 illus.) 225 1 $aSpringer Undergraduate Mathematics Series,$x1615-2085 300 $aIncludes index. 300 $a"With 63 figures." 311 $a3-540-76180-2 327 $a1. Vector Algebra -- 1.1 Vectors and scalars -- 1.2 Dot product -- 1.3 Cross product -- 1.4 Scalar triple product -- 1.5 Vector triple product -- 1.6 Scalar fields and vector fields -- 2. Line, Surface and Volume Integrals -- 2.1 Applications and methods of integration -- 2.2 Line integrals -- 2.3 Surface integrals -- 2.4 Volume integrals -- 3. Gradient, Divergence and Curl -- 3.1 Partial differentiation and Taylor series -- 3.2 Gradient of a scalar field -- 3.3 Divergence of a vector field -- 3.4 Curl of a vector field -- 4. Suffix Notation and its Applications -- 4.1 Introduction to suffix notation -- 4.2 The Kronecker delta ?ij -- 4.3 The alternating tensor ?ijk -- 4.4 Relation between ?ijk and ?ij -- 4.5 Grad, div and curl in suffix notation -- 4.6 Combinations of grad, div and curl -- 4.7 Grad, div and curl applied to products of functions -- 5. Integral Theorems -- 5.1 Divergence theorem -- 5.2 Stokes?s theorem -- 6. Curvilinear Coordinates -- 6.1 Orthogonal curvilinear coordinates -- 6.2 Grad, div and curl in orthogonal curvilinear coordinate systems -- 6.3 Cylindrical polar coordinates -- 6.4 Spherical polar coordinates -- 7. Cartesian Tensors -- 7.1 Coordinate transformations -- 7.2 Vectors and scalars -- 7.3 Tensors -- 7.4 Physical examples of tensors -- 8. Applications of Vector Calculus -- 8.1 Heat transfer -- 8.2 Electromagnetism -- 8.3 Continuum mechanics and the stress tensor -- 8.4 Solid mechanics -- 8.5 Fluid mechanics -- Solutions. 330 $aVector calculus is the fundamental language of mathematical physics. It pro­ vides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These top­ ics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. The book is designed to be self-contained, so that it is suitable for a pro­ gramme of individual study. Each of the eight chapters introduces a new topic, and to facilitate understanding of the material, frequent reference is made to physical applications. The physical nature of the subject is clarified with over sixty diagrams, which provide an important aid to the comprehension of the new concepts. Following the introduction of each new topic, worked examples are provided. It is essential that these are studied carefully, so that a full un­ derstanding is developed before moving ahead. Like much of mathematics, each section of the book is built on the foundations laid in the earlier sections and chapters. 410 0$aSpringer Undergraduate Mathematics Series,$x1615-2085 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMathematical physics 606 $aEngineering 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aEngineering, general$3https://scigraph.springernature.com/ontologies/product-market-codes/T00004 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aMathematical physics. 615 0$aEngineering. 615 14$aApplications of Mathematics. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aEngineering, general. 676 $a515/.63 700 $aMatthews$b Paul C$4aut$4http://id.loc.gov/vocabulary/relators/aut$01346 906 $aBOOK 912 $a9910789344903321 996 $aVector calculus$91427223 997 $aUNINA