LEADER 01958nam2 22004333i 450 001 SUN0104423 005 20160108010736.465 010 $a08-983512-4-3$d0.00 100 $a20160104d1984 |0engc50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $a25: *Early Italian masters. Commentary$fby Mark J. Zucker 205 $aNew York : Abaris books, 1984 210 $a626 p.$a31 cm 215 $aSul frontespizio: Formerly volume, 13 pt.2. 461 1$1001SUN0037332$12001 $aThe *illustrated Bartsch$fgeneral editor: Walter L. Strauss$g[poi] founding editor Walter L. Strauss$ggeneral editor John T. Spike$v25$1210 $aNew York$cAbaris books$1215 $avolumi$cill.$d31 cm. 606 $aMantegna, Andrea$2LB$3SUNC031556 606 $aCampagnola, Domenico$2LB$3SUNC031557 606 $aFogolino, Marcello$2LB$3SUNC031558 606 $aMontagna, Benedetto$2LB$3SUNC031559 606 $aZoan, Andrea$2LB$3SUNC031561 606 $aBaldini, Baccio$2LB$3SUNC031562 606 $aPollaiuolo, Andrea$2LB$3SUNC031563 606 $aMocetto, Girolamo$2LB$3SUNC031564 606 $aModena, Nicoletto da$2LB$3SUNC031565 606 $aBrescia, Giovanni Maria da$2LB$3SUNC031566 606 $aBrescia, Giovanni Antonio da$2LB$3SUNC031567 606 $aCampagnola, Giolio$2LB$3SUNC031568 606 $aRobetta, Cristofano$2LB$3SUNC031569 620 $aUS$dNew York$3SUNL000011 700 1$aZucker$b, Mark J.$3SUNV050716$0730119 712 $aAbaris books$3SUNV003351$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0104423 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07 CONS Ne 1160 25 $e07 UBL378 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$bIT-CE0103$gUBL$h378$kCONS Ne 1160 25$oc$qa 996 $aEarly Italian masters. Commentary$91440042 997 $aUNICAMPANIA LEADER 03037nam a2200373 i 4500 001 991002955089707536 008 160728s2014 sz a b 001 0 eng d 020 $a9783319113364 035 $ab14259990-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.35$223 084 $aAMS 14L24 084 $aAMS 14B05 084 $aAMS 14C05 084 $aAMS 14C25 084 $aLC QA564.B485 245 00$aGeometric invariant theory for polarized curves /$cGilberto Bini ... [et al.] 260 $aCham [Switzerland] :$bSpringer,$cc2014 300 $ax, 211 p. :$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2122 504 $aIncludes bibliographical references and index 505 0 $aIntroduction ; Singular curves ; Combinatorial results ; Preliminaries on GIT ; Potential pseudo-stability theorem ; Stabilizer subgroups ; Behavior at the extremes of the Basic Inequality ; A criterion of stability for Tails ; Elliptic tails and tacnodes with a line ; A strati_cation of the Semistable Locus ; Semistable, polystable and stable points (part I) ; Stability of Elliptic Tails ; Semistable, polystable and stable points (part II) ; Geometric properties of the GIT quotient ; Extra Components of the GIT quotient -- Compacti_cations of the Universal Jacobian ; Appendix: positivity Properties of Balanced Line Bundles 520 $aWe investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5