LEADER 01039nam0 2200289 450 001 000033491 005 20131011105954.0 010 $a3-8031-2031-4 100 $a20121011d1977----km-y0itaa50------ba 101 0 $ager 102 $aDE 200 1 $aPäpstin Johanna$eein Lesebuch$fKlaus Völker 210 $aBerlin$cWagenbach$d1977 215 $a125 p.$cill.$d18 cm 225 2 $aWagenbachs Taschenbücherei$v31 410 0$12001$aWagenbachs Taschenbücherei$v31 600 1$aGiovanna$c$xLeggende 676 $a282.09$v(22. ed.)$9Chiesa cattolica. Storia, geografia, persone 700 1$aVölker,$bKlaus$0756853 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000033491 996 $aPäpstin Johanna$91529520 997 $aUNIBAS CAT $aSTD084$b01$c20121011$lBAS01$h1015 CAT $aTTM$b30$c20131011$lBAS01$h1059 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA1$APolo Storico-Umanistico$2FMAS$BFondo Masini$3FMas/817/4039$6817/4039$5B817/4039$820121011$f02$FPrestabile Generale LEADER 02549nam a2200361 i 4500 001 991002954509707536 006 m o d 007 cr |n||||||||| 008 160726s2015 sz ob 000 0 eng d 020 $a9783319129167 035 $ab14259850-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.7$223 084 $aAMS 11F50 084 $aAMS 11F27 084 $aLC QA243 100 1 $aBoylan, Hatice$0716391 245 10$aJacobi forms, finite quadratic modules and Weil representations over number fields$h[e-book] /$cHatice Boylan 260 $aCham [Switzerland] :$bSpringer,$c2015 300 $a1 online resource (xviii, 130 pages) 440 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2130 504 $aIncludes bibliographical references 505 0 $aIntroduction ; Notations ; Finite quadratic modules ; Weil representations of finite quadratic modules ; Jacobi forms over totally real number fields ; Singular Jacobi forms ; Tables ; Glossary 520 $aThe new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field 650 0$aJacobi forms 650 0$aNumber theory 776 08$aPrinted edition:$z9783319129150 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-12916-7$zAn electronic book accessible through the World Wide Web 907 $a.b14259850$b03-03-22$c26-07-16 912 $a991002954509707536 996 $aJacobi forms, finite quadratic modules and Weil representations over number fields$91388117 997 $aUNISALENTO 998 $ale013$b26-07-16$cm$d@ $e-$feng$gsz $h0$i0 LEADER 01126nam0 22002891i 450 001 UON00206513 005 20231205103316.126 100 $a20030730d1992 |0itac50 ba 101 $ahbs 102 $aYU 105 $a|||| ||||| 200 1 $aIstorijski Roman$eZbornik Radova$furednik Miodrag Maticki 210 $aBeograd$cInstitut za knjizevnost i umetnost ; Sarajevo$cInstitut za knjizevnost$d1992 215 $a500 p.$d24 cm. 606 $aRomanzo storico serbo$3UONC043223$2FI 620 $aBA$dSarajevo$3UONL000010 620 $aRS$dBelgrado$3UONL001000 676 $a891.82$cLetteratura serbo-croata$v21 702 1$aMATICKI$bMiodrag$3UONV123946 712 $aInstitut za knjizevnost$3UONV267607$4650 712 $aInstitut za knji?evnost i umetnost$3UONV267603$4650 801 $aIT$bSOL$c20251121$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00206513 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI CROATO A 0100 $eSI EO 27895 5 0100 996 $aIstorijski Roman$91259075 997 $aUNIOR