LEADER 02088nam a2200361 i 4500 001 991002946999707536 008 160719s2015 sz a ob 001 0 eng d 020 $a9783319175201 024 7 $a10.1007/978-3-319-17521-8$2doi 035 $ab14258523-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.35$223 084 $aAMS 32G20 084 $aAMS 14F05 084 $aAMS 32C35 084 $aAMS 53D05 084 $aLC QA564.K52 100 1 $aKirschner, Tim$0716373 245 10$aPeriod mappings with applications to symplectic complex spaces /$cTim Kirschner 260 $aCham :$bSpringer,$c[2015] 300 $axviii, 275 p. :$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2140 504 $aIncludes bibliographical references 520 $aExtending Griffiths classical theory of period mappings for compact Khler manifolds, this book develops and applies a theory of period mappings of Hodge-de Rham type for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frlicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkhler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely 650 0$aGeometry, Algebraic 650 0$aNumbers, Complex 650 0$aSymplectic spaces 907 $a.b14258523$b22-11-16$c19-07-16 912 $a991002946999707536 945 $aLE013 32G KIR11 (2015)$g1$i2013000293769$lle013$op$pE46.79$q-$rl$s- $t0$u1$v0$w1$x0$y.i15788878$z22-11-16 996 $aPeriod mappings with applications to symplectic complex spaces$91388038 997 $aUNISALENTO 998 $ale013$b19-07-16$cm$da $e-$feng$gsz $h0$i0