LEADER 01012nam0 2200277 450 001 000038856 005 20141003125031.0 100 $a20141003d1985----km-y0itaa50------ba 101 0 $aita 102 $aIT 200 1 $aModelli e misure ritmiche: la durata vocalica in italiano$fGiovanna Marotta 210 $aBologna$cZanichelli$d1985 215 $a188 p.$d21 cm 225 2 $aFenomeni linguistici$v5 410 0$12001$aFenomeni linguistici$v5 606 1 $aLingua italiana$xFonetica 676 $a451.6$v(22. ed.)$9Lingua italiana. Intonazione 700 1$aMarotta,$bGiovanna$0447356 801 0$aIT$bUniversità della Basilicata - B.I.A.$gREICAT$2unimarc 912 $a000038856 996 $aModelli e misure ritmiche: la durata vocalica in italiano$9101210 997 $aUNIBAS BAS $aLETTERE CAT $aEXT016$b01$c20141003$lBAS01$h1250 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA1$APolo Storico-Umanistico$2DSLF$BCollezione DiSLF$3DF/E1949$63054$5F3054$820141003$f04$FPrestabile Didattica LEADER 02442cam a2200361 i 4500 001 991002946249707536 008 160715s2014 sz a ob 001 0 eng d 020 $a9783319114446 035 $ab14258407-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.94$223 084 $aAMS 12H05 084 $aAMS 13P10 084 $aAMS 16S36 084 $aAMS 35-02 084 $aLC QA192.R62 100 1 $aRobertz, Daniel$0716368 245 10$aFormal algorithmic elimination for PDEs /$cDaniel Robertz 260 $aCham [Switzerland] :$bSpringer,$cc2014 300 $avi, 283 p. ;$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2121 504 $aIncludes bibliographical references and index 505 0 $aIntroduction ; Formal methods for PDE systems ; Differential elimination for analytic functions ; Basic principles and supplementary material ; References ; List of algorithms ; List of examples ; Index of notation ; Index 520 $aInvestigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions coincides with a given parametrized set of analytic functions. After giving a detailed introduction to Janet bases and Thomas decomposition, the problem of finding an implicit description of certain sets of analytic functions in terms of differential equations is addressed. Effective methods of varying generality are developed to solve the differential elimination problems that arise in this context. In particular, it is demonstrated how the symbolic solution of partial differential equations profits from the study of the implicitization problem. For instance, certain families of exact solutions of the Navier-Stokes equations can be computed 650 0$aDifferential equations, Partial 650 0$aElimination 776 0 $aPrinted edition:$z9783319114446 907 $a.b14258407$b17-11-16$c15-07-16 912 $a991002946249707536 945 $aLE013 12H ROB11 (2014)$g1$i2013000293608$lle013$op$pE46.79$q-$rl$s- $t0$u1$v0$w1$x0$y.i15787515$z17-11-16 996 $aFormal algorithmic elimination for PDEs$91388028 997 $aUNISALENTO 998 $ale013$b15-07-16$cm$da $e-$feng$gsz $h0$i0