LEADER 02239nam a2200301 i 4500 001 991002944169707536 008 160712s2015 sz a ob 001 0 eng d 020 $a9783319100876 035 $ab14258079-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.36$223 084 $aAMS 32C38 084 $aAMS 14F10 100 1 $aMochizuki, Takuro$0319920 245 10$aMixed twistor D-modules /$cTakuro Mochizuki 260 $aCham [Switzerland] :$bSpringer,$cc2015 300 $axx, 487 p. :$bill. ;$c24 cm 440 0$aLecture notes in mathematics,$x0075-8434 ;$v2125 504 $aIncludes bibliographical references and index 505 0 $aIntroduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular values 520 $aWe introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular. ?? 650 0$aD-modules 907 $a.b14258079$b22-11-16$c12-07-16 912 $a991002944169707536 945 $aLE013 32C MOC11 (2015)$g1$i2013000293660$lle013$op$pE72.79$q-$rl$s- $t0$u1$v0$w1$x0$y.i15788751$z22-11-16 996 $aMixed twistor D-modules$91387912 997 $aUNISALENTO 998 $ale013$b12-07-16$cm$da $e-$feng$gsz $h0$i0