LEADER 02338nam a2200325Ii 4500 001 991002944109707536 006 m o d 007 cr cnu|||||||| 008 160712s2015 sz a ob 001 0 eng d 020 $a9783319100883 035 $ab14258067-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a516.36$223 084 $aAMS 32C38 084 $aAMS 14F10 100 1 $aMochizuki, Takuro$0319920 245 10$aMixed twistor D-modules$h[e-book] /$cTakuro Mochizuki 260 $aCham [Switzerland] :$bSpringer,$c[2015] 300 $a1 online resource (xx, 487 pages) :$billustrations 440 0$aLecture notes in mathematics,$x1617-9692 ;$v2125 504 $aIncludes bibliographical references and index 505 0 $aIntroduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular values 520 $aWe introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular. ?? 650 0$aD-modules 856 40$uhttp://link.springer.com/book/10.1007/978-3-319-10088-3$zAn electronic book accessible through the World Wide Web 907 $a.b14258067$b03-03-22$c12-07-16 912 $a991002944109707536 996 $aMixed twistor D-modules$91387912 997 $aUNISALENTO 998 $ale013$b12-07-16$cm$d@ $e-$feng$gsz $h0$i0