LEADER 03357nam 2200625 450 001 9910788849203321 005 20180731044909.0 010 $a1-4704-0371-4 035 $a(CKB)3360000000464957 035 $a(EBL)3114572 035 $a(SSID)ssj0000973843 035 $a(PQKBManifestationID)11553854 035 $a(PQKBTitleCode)TC0000973843 035 $a(PQKBWorkID)10960028 035 $a(PQKB)11412592 035 $a(MiAaPQ)EBC3114572 035 $a(RPAM)12992127 035 $a(PPN)195416597 035 $a(EXLCZ)993360000000464957 100 $a20021105d2003 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe rational function analogue of a question of Schur and exceptionality of permutation representations /$fRobert M. Guralnick, Peter Mu?ller, Jan Saxl 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2003. 215 $a1 online resource (96 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 773 300 $a"Volume 162, number 773 (end of volume)." 311 $a0-8218-3288-3 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups"" 327 $a""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" 327 $a""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 773. 606 $aAlgebraic fields 606 $aArithmetic functions 606 $aPermutation groups 606 $aPolynomials 615 0$aAlgebraic fields. 615 0$aArithmetic functions. 615 0$aPermutation groups. 615 0$aPolynomials. 676 $a512/.3 700 $aGuralnick$b Robert M.$f1950-$01565955 702 $aMu?ller$b Peter$f1966- 702 $aSaxl$b J$g(Jan),$f1948- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788849203321 996 $aThe rational function analogue of a question of Schur and exceptionality of permutation representations$93836107 997 $aUNINA LEADER 01488nam a2200361 i 4500 001 991002929029707536 005 20250311155806.0 008 000927s1975 it er 000 0 ita d 035 $ab1108215x-39ule_inst 035 $aPARLA171728$9ExL 040 $aDip.to Scienze Storiche Fil. e Geogr.$bita$dSocioculturale Scs 041 1 $aita$heng 082 04$a945.91$223 100 1 $aCannistraro, Philip V.$0142063 245 13$aLa fabbrica del consenso :$bfascismo e mass media /$cPhilip V. Cannistraro ; prefazione di Renzo De Felice 260 $aRoma ;$aBari :$bLaterza,$c1975 300 $aXIV, 497 p. ;$c18 cm 490 1 $aTempi nuovi ;$v74 500 $aCon appendice di documenti. 500 $aTrad. dall'originale di Giovanni Ferrara 650 4$aFascismo$xPolitica culturale 650 4$aFascismo$xPropaganda 700 1 $aFerrara, Giovanni 700 1 $aDe Felice, Renzo 830 0$aTempi nuovi ;$v74 907 $a.b1108215x$b23-02-17$c28-06-02 912 $a991002929029707536 945 $aLE005IF XXXVI F 19$g1$i2005000216220$lle005$o-$pE0.00$q-$rl$s-$t0$u9$v1$w9$x0$y.i11212433$z28-06-02 945 $aLE022 MPs-S 114 B 32$g1$i2022000168250$lle022$o-$pE0.00$q-$rl$sm$t0$u0$v0$w0$x0$y.i13207982$z19-03-04 945 $aLE009 STOR.65-299$g1$i2009000358539$lle009$o-$pE0.00$q-$rl$s-$t0$u16$v5$w16$x0$y.i11212457$z28-06-02 996 $aFabbrica del consenso$9509523 997 $aUNISALENTO 998 $ale005$ale022$ale009$b01-01-00$cm$da$e-$fita$git$h3$i3