LEADER 01552nam0 2200313 i 450 001 SUN0052329 005 20201026092555.421 010 $a978-35-400-6157-1$d0.00 100 $a20060914d1974 |0engc50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aContinuous flows in the plane$fAnatole Beck$gwith the assistance of Jonathan and Mirit Lewin 210 $aBerlin$cSpringer$d1974 215 $aX, 462 p.$d24 cm. 410 1$1001SUN0024107$12001 $a*Grundlehren der mathematischen Wissenschaften$eA series of comprehensive texts in mathematics$v201$1210 $aBerlin$cSpringer$d1921-. 606 $a37-XX$xDynamical systems and ergodic theory [MSC 2020]$2MF$3SUNC020363 606 $a54-XX$xGeneral topology [MSC 2020]$2MF$3SUNC020587 606 $a57S25$xGroups acting on specific manifolds [MSC 2020]$2MF$3SUNC020836 606 $a34C05$xTopological structure of integral curves, singular points, limit cycles of ordinary differential equations [MSC 2020]$2MF$3SUNC022914 620 $dBerlin$3SUNL000066 700 1$aBeck$b, Anatole$3SUNV041228$041062 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201102$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Beck - Continuous flows in the plane.pdf$zContents 912 $aSUN0052329 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 37-XX 0292 $e08 2907 I 20060914 996 $aContinuous flows in the plane$9922984 997 $aUNICAMPANIA LEADER 00988nam a22002291i 4500 001 991002807709707536 005 20030807092452.0 008 030925s1959 be |||||||||||||||||fre 035 $ab12341204-39ule_inst 035 $aARCHE-038874$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 100 1 $aDargent, Juliette Lambertine$0453873 245 10$aCommission belge de bibliographie :$bA.S.B.L. sous- commission de la commission nationale pour l'Unesco 1957 /$cJ.-L. Dargent 260 $aBruxelles :$bCommission Belge de Bibliographie,$c1959 300 $a1 v. ;$c21 cm 440 0$aBibliographia Belgica ;$v40 907 $a.b12341204$b02-04-14$c08-10-03 912 $a991002807709707536 945 $aLE002 A Bibl. V C 14$g1$i2002000050366$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12744074$z08-10-03 996 $aCommission belge de bibliographie$9159173 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$ffre$gbe $h0$i1