LEADER 01587cam0-2200505---450- 001 990000090300203316 005 20090730103859.0 010 $a88-14-08040-2 035 $a0009030 035 $aUSA010009030 035 $a(ALEPH)000009030USA01 035 $a0009030 100 $a20000914d2000----|||y0itay0103----ba 101 0 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> assicurazione nella storia delle idee$ela risposta giuridica al bisogno di sicurezza economica$eieri e oggi$fAntonio La Torre 205 $a2.ed. 210 $aMilano$cA.Giuffrè$dcopyr. 2000 215 $aXXVI, 349 p.$d24 cm 606 $aAssicurazioni$xStoria 676 $a368.009 700 1$aLA TORRE,$bAntonio$0177687 801 $aIT$bSALBC$gISBD 912 $a990000090300203316 951 $a368.009 LAT 1 (IG II 718)$b25658 G.$cIG II$d00003928 959 $aBK 969 $aGIU 979 $c20000914$lUSA01$h1741 979 $c20001019$lUSA01$h1056 979 $c20001019$lUSA01$h1454 979 $c20001019$lUSA01$h1501 979 $c20001019$lUSA01$h1539 979 $c20001024$lUSA01$h1515 979 $c20001027$lUSA01$h1519 979 $c20001027$lUSA01$h1524 979 $c20001110$lUSA01$h1710 979 $c20001124$lUSA01$h1208 979 $aPATTY$b90$c20011112$lUSA01$h1058 979 $c20020403$lUSA01$h1616 979 $aPATRY$b90$c20040406$lUSA01$h1607 979 $aPATRY$b90$c20050125$lUSA01$h1647 979 $aRSIAV2$b90$c20090730$lUSA01$h1038 996 $aAssicurazione nella storia delle idee$9500968 997 $aUNISA LEADER 00982nam a22002651i 4500 001 991002732509707536 005 20040316184948.0 008 040624s1979 it |||||||||||||||||ita 035 $ab12969357-39ule_inst 035 $aARCHE-092703$9ExL 040 $aDip.to Beni Culturali$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a937 100 1 $aPoccetti, Paolo$0205354 245 10$aNuovi documenti italici :$ba complemento del Manuale di E. Vetter /$cPaolo Poccetti 260 $aPisa :$bGiardini,$c[1979] 300 $a218 p. ;$c25 cm 440 0$aOrientamenti linguistici ;$v8 650 4$aIscrizioni italiche 700 1 $aVetter, Emil 907 $a.b12969357$b02-04-14$c12-07-04 912 $a991002732509707536 945 $aLE001 AN III 76$g1$i2001000049196$lle001$nC. 1$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13571539$z12-07-04 996 $aNuovi documenti italici$9279245 997 $aUNISALENTO 998 $ale001$b12-07-04$cm$da $e-$fita$git $h0$i1 LEADER 05154nam 22006375 450 001 9910437861803321 005 20251116210738.0 010 $a1-4614-6849-3 024 7 $a10.1007/978-1-4614-6849-3 035 $a(CKB)3390000000037144 035 $a(SSID)ssj0000904250 035 $a(PQKBManifestationID)11943813 035 $a(PQKBTitleCode)TC0000904250 035 $a(PQKBWorkID)10908879 035 $a(PQKB)10545081 035 $a(DE-He213)978-1-4614-6849-3 035 $a(MiAaPQ)EBC6245972 035 $a(MiAaPQ)EBC1317001 035 $a(Au-PeEL)EBL1317001 035 $a(CaPaEBR)ebr10969096 035 $a(OCoLC)870244221 035 $a(PPN)170487997 035 $a(EXLCZ)993390000000037144 100 $a20130517d2013 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aApplied Predictive Modeling /$fby Max Kuhn, Kjell Johnson 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2013. 215 $a1 online resource (XIII, 600 p. 203 illus., 153 illus. in color.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a1-4614-6848-5 320 $aIncludes bibliographical references (pages 569-587) and index. 327 $aGeneral Strategies -- Regression Models -- Classification Models -- Other Considerations -- Appendix -- References -- Indices. 330 $aThis text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance?all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code for each step of the process. The data sets and corresponding code are available in the book?s companion AppliedPredictiveModeling R package, which is freely available on the CRAN archive. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner?s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book?s R package. Readers and students interested in implementing the methods should have some basic knowledge of R. And a handful of the more advanced topics require some mathematical knowledge. . 606 $aStatistics 606 $aStatistics for Life Sciences, Medicine, Health Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/S17030 606 $aStatistics and Computing/Statistics Programs$3https://scigraph.springernature.com/ontologies/product-market-codes/S12008 606 $aStatistics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/S0000X 615 0$aStatistics. 615 14$aStatistics for Life Sciences, Medicine, Health Sciences. 615 24$aStatistics and Computing/Statistics Programs. 615 24$aStatistics, general. 676 $a519.5 700 $aKuhn$b Max$4aut$4http://id.loc.gov/vocabulary/relators/aut$0524999 702 $aJohnson$b Kjell$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437861803321 996 $aApplied Predictive Modeling$92528198 997 $aUNINA