LEADER 00683nam0-22002651i-450- 001 990000292340403321 005 20090212123903.0 035 $a000029234 035 $aFED01000029234 035 $a(Aleph)000029234FED01 035 $a000029234 100 $a20020821d1982----km-y0itay50------ba 101 0 $aeng 105 $aa-------001yy 200 1 $aProcess Heat Transfer$fDonald Q. Kern 210 $aAuckland$cMcGraw-Hill$d1982 215 $aXII, 871 p.$cill.$d22 cm 676 $a620 700 1$aKern,$bDonald Q. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000292340403321 952 $a04 164-53$bCI 7355$fDINCH 959 $aDINCH 997 $aUNINA LEADER 03334nam 2200697 450 001 9910465330803321 005 20210716000931.0 010 $a0-691-00257-6 010 $a1-4008-6518-2 024 7 $a10.1515/9781400865185 035 $a(CKB)3710000000221858 035 $a(EBL)1756204 035 $a(OCoLC)887499708 035 $a(SSID)ssj0001333670 035 $a(PQKBManifestationID)12618247 035 $a(PQKBTitleCode)TC0001333670 035 $a(PQKBWorkID)11394032 035 $a(PQKB)11541986 035 $a(MiAaPQ)EBC1756204 035 $a(DE-B1597)447948 035 $a(OCoLC)922696192 035 $a(DE-B1597)9781400865185 035 $a(Au-PeEL)EBL1756204 035 $a(CaPaEBR)ebr10907682 035 $a(CaONFJC)MIL636773 035 $a(EXLCZ)993710000000221858 100 $a20140822h19981998 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 14$aThe real Fatou conjecture /$fby Jacek Graczyk and Grzegorz Swiatek 210 1$aPrinceton, New Jersey :$cPrinceton University Press,$d1998. 210 4$d{copy}1998 215 $a1 online resource (158 p.) 225 1 $aAnnals of Mathematics Studies ;$vNumber 144 300 $aDescription based upon print version of record. 311 0 $a1-322-05522-X 311 0 $a0-691-00258-4 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tChapter 1. Review of Concepts --$tChapter 2. Quasiconformal Gluing --$tChapter 3. Polynomial-Like Property --$tChapter 4. Linear Growth of Moduli --$tChapter 5. Quasi conformal Techniques --$tBibliography --$tIndex 330 $aIn 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students. 410 0$aAnnals of mathematics studies ;$vNumber 144. 606 $aGeodesics (Mathematics) 606 $aPolynomials 606 $aMappings (Mathematics) 608 $aElectronic books. 615 0$aGeodesics (Mathematics) 615 0$aPolynomials. 615 0$aMappings (Mathematics) 676 $a516.3/62 700 $aGraczyk$b Jacek$066776 702 $aSwiatek$b Grzegorz$f1964- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910465330803321 996 $aReal Fatou conjecture$91501746 997 $aUNINA LEADER 01343nam a2200301 i 4500 001 991002704939707536 005 20020508204627.0 008 960614s1986 it ||| | ita 035 $ab11048293-39ule_inst 035 $aPARLA167500$9ExL 040 $aDip.to scienze storiche$bita 082 04$a809.89287 100 1 $aDronke, Peter$0155570 245 10$aDonne e cultura nel Medioevo :$bscrittrici medievali dal 2. al 14. secolo /$cPeter Dronke ; prefazione di MariaTeresa Fumagalli Beonio Brocchieri 260 $aMilano :$bIl saggiatore,$c1986 300 $aXVII, 364 p. ;$c21 cm. 440 3$aLa cultura ;$v39 650 4$aScrittrici$ySec.2.-14. 700 1 $aFumagalli Beonio Brocchieri, Mariateresa 907 $a.b11048293$b23-02-12$c28-06-02 912 $a991002704939707536 945 $aLE023 809.89 DRO 1 1 945 $aLE009 STOR.35-42ter (vecchia collocazione)$g1$i2023000156018$lle023$o-$pE0.00$q-$rl$s- $t0$u3$v1$w3$x0$y.i11172708$z28-06-02 945 $aLE009 STOR.35-42$g1$i2009000149489$lle009$o-$pE0.00$q-$rl$s- $t0$u13$v7$w13$x0$y.i1117271x$z28-06-02 945 $aLE009 STOR.35-42bis$g1$i2009000149502$lle009$o-$pE0.00$q-$rn$so $t0$u3$v1$w3$x0$y.i11172721$z28-06-02 996 $aDonne e cultura nel Medioevo$9149544 997 $aUNISALENTO 998 $ale023$a(2)le009$b01-01-96$cm$da $e-$fita$git $h0$i3