LEADER 00722nam0-22002891i-450- 001 990001068830403321 010 $a0-12-685201-4 035 $a000106883 035 $aFED01000106883 035 $a(Aleph)000106883FED01 035 $a000106883 100 $a20000920d1981----km-y0itay50------ba 101 0 $aeng 200 1 $aFusion$fEdited by Edward Teller 210 $aNew York$cAcademic Press$d1981 610 0 $aPlasmi 676 $a530.44 700 1$aTeller,$bEdward$035816 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001068830403321 952 $a32E-050$b12284$fFI1 952 $a32E-050.001$b$fFI1 959 $aFI1 996 $aFusion$9339814 997 $aUNINA DB $aING01 LEADER 04478nam 2200565Ia 450 001 9910461902703321 005 20200520144314.0 010 $a81-224-3491-6 035 $a(CKB)2670000000254100 035 $a(EBL)3017437 035 $a(SSID)ssj0000937043 035 $a(PQKBManifestationID)11542721 035 $a(PQKBTitleCode)TC0000937043 035 $a(PQKBWorkID)10975562 035 $a(PQKB)10414514 035 $a(MiAaPQ)EBC3017437 035 $a(Au-PeEL)EBL3017437 035 $a(CaPaEBR)ebr10594267 035 $a(OCoLC)842259898 035 $a(EXLCZ)992670000000254100 100 $a20111102d2012 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAdvanced trigonometric relations through Nbic functions$b[electronic resource] /$fNIsith K. Bairagi 210 $aNew Delhi $cNew Age International$d2012 215 $a1 online resource (281 p.) 300 $aIncludes index. 311 $a81-224-3023-6 327 $a""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions "" 327 $a""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) "" 327 $a""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function "" 327 $a""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions "" 327 $a""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, A?± 2x) AND (2x, A?± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, A?± 2x) and (2x, A?± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics "" 327 $a""2.1 De Moivre's form Extended in Nbic Function "" 606 $aTrigonometry 606 $aMathematics 608 $aElectronic books. 615 0$aTrigonometry. 615 0$aMathematics. 700 $aBairagi$b Nisith K$0854937 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910461902703321 996 $aAdvanced trigonometric relations through Nbic functions$91909065 997 $aUNINA LEADER 00940nam a2200289 i 4500 001 991002526899707536 005 20250121160657.0 008 140522s2010 it erb 001 0 ita d 020 $a9788843050062 035 $ab14189033-39ule_inst 040 $aDip. di Studi Umanistici$bita$dSocioculturale Scs 041 0 $aita 082 04$a194$223 100 1 $aMori, Gianluca$d<1960- >$0246797 245 10$aCartesio /$cGianluca Mori 260 $aRoma :$bCarocci,$c2010 300 $a294 p. ;$c22 cm 490 1 $aPensatori ;$v11 504 $aBibliografia: p. 273-288. Indice 600 14$aDescartes, René 830 0$aPensatori ;$v11 907 $a.b14189033$b10-07-14$c22-05-14 912 $a991002526899707536 945 $aLE007 194 MOR 02.01$g1$i2007000253045$lle007$op$pE18.00$q-$rl$s-$t0$u1$v0$w1$x0$y.i15624122$z10-07-14 996 $aCartesio$9259423 997 $aUNISALENTO 998 $ale007$b22-05-14$cm$da$e-$fita$git$h0$i0