LEADER 01521nas a2200325 i 4500 001 991002507549707536 005 20231114120858.0 008 011205m19919999it r p 0 0ita d 022 $a1120-4060 035 $ab11669846-39ule_inst 035 $aocm00000001$9ExL 080 $aCDU 581 229 0$aBocconea 245 00$aBocconea /$cPro Herbario Mediterraneo. Dipartimento di Scienze Botaniche. - 1991- 260 $aPalermo,$c1991- 591 $aCodice CNR: P 00151181 592 $aLE003 1994-2007; 710 2 $aPro Herbario Mediterraneo. Dipartimento di Scienze Botaniche 907 $a.b11669846$b07-03-13$c08-07-02 912 $a991002507549707536 945 $aLE003$g1$lle003$o-$pE0.00$q-$rn$s- $t18$u0$v0$w0$x0$y.i11895032$z08-07-02 945 $aLE003$cVol. 5 (1996)$g1$lle003$on$pE38.83$q-$rn$so $t18$u0$v0$w0$x0$y.i14776686$z16-06-08 945 $aLE003$cVoll. 9-10 (1998)$g1$lle003$on$pE156.32$q-$rn$so $t18$u0$v0$w0$x0$y.i14190916$z08-02-06 945 $aLE003$cVoll. 11-12 (1999)$g1$lle003$on$pE156.32$q-$rn$so $t18$u0$v0$w0$x0$y.i14190928$z08-02-06 945 $aLE003$cVoll. 13-14 (2001)$g1$lle003$on$pE156.32$q-$rn$so $t18$u0$v0$w0$x0$y.i14190965$z08-02-06 945 $aLE003$cVoll. 15-16 (2003)$g1$lle003$on$pE156.32$q-$rn$so $t18$u0$v0$w0$x0$y.i14190977$z08-02-06 945 $aLE003$cVol. 17 (2004)$g1$lle003$on$pE78.16$q-$rn$so $t18$u0$v0$w0$x0$y.i14190989$z08-02-06 996 $aBocconea$9892147 997 $aUNISALENTO 998 $ale003$b01-01-01$cs$da $e-$fita$git $h0$i1 LEADER 01673nas 2200361 n 450 001 990008929140403321 005 20240229084437.0 035 $a000892914 035 $aFED01000892914 035 $a(Aleph)000892914FED01 035 $a000892914 091 $2CNR$aP 00088024 100 $a20161109b19391957km-y0itaa50------ba 101 0 $afre 110 $aauu-------- 200 1 $aBulletin de l'Office International du Vin 207 1$a1939-1957 210 $aParis$c[s.n.] 430 0$12001$aBulletin international du vin 440 0$1001000892916$12001$aBulletin de l'OIV 530 0 $aBulletin de l'Office International du Vin 675 $a663.2 712 02$aOffice International du Vin 801 0$aIT$bACNP$c20090723 859 4 $uhttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/dc-p1.tcl?catno=59284&person=false&language=ITALIANO&libr=&libr_th=unina1$zBiblioteche che possiedono il periodico 901 $aSE 912 $a990008929140403321 958 $aBiblioteca. Dipartimento Scienza degli Alimenti. Sez. Scienza degli Alimenti-Facoltą di Agraria-Universitą degli Studi Federico II di Napoli$b1946-1957.$fDAGSA 959 $aDAGSA 996 $aBulletin de l'Office International du Vin$9798306 997 $aUNINA AP1 8 $6866-01$aNA144 Biblioteca. Dipartimento Scienza degli Alimenti. Sez. Scienza degli Alimenti-Facoltą di Agraria-Universitą degli Studi Federico II di Napoli$ev. Universitą,100, 80055 Portici (NA)$m08125.39322$nit AP2 40$aacnp.cib.unibo.it$nACNP Italian Union Catalogue of Serials$uhttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/df-p.tcl?catno=59284&language=ITALIANO&libr=&person=&B=1&libr_th=unina&proposto=NO LEADER 04296nam 22007215 450 001 9910978380703321 005 20250212115412.0 010 $a9783031628108 010 $a3031628101 024 7 $a10.1007/978-3-031-62810-8 035 $a(CKB)37515644400041 035 $a(MiAaPQ)EBC31903254 035 $a(Au-PeEL)EBL31903254 035 $a(OCoLC)1499354023 035 $a(DE-He213)978-3-031-62810-8 035 $a(EXLCZ)9937515644400041 100 $a20250212d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Crossing-Variable Cubic Nonlinear Systems /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (338 pages) 311 08$a9783031628092 311 08$a3031628098 327 $aConstant and crossing-cubic vector fields -- Crossing-linear and crossing-cubic vector fields -- Crossing-quadratic and crossing-cubic Vector Field -- Two crossing-cubic vector fields. 330 $aThis book is the fourth of 15 related monographs presents systematically a theory of crossing-cubic nonlinear systems. In this treatment, at least one vector field is crossing-cubic, and the other vector field can be constant, crossing-linear, crossing-quadratic, and crossing-cubic. For constant vector fields, the dynamical systems possess 1-dimensional flows, such as parabola and inflection flows plus third-order parabola flows. For crossing-linear and crossing-cubic systems, the dynamical systems possess saddle and center equilibriums, parabola-saddles, third-order centers and saddles (i.e, (3rd UP+:UP+)-saddle and (3rdUP-:UP-)-saddle) and third-order centers (i.e., (3rd DP+:DP-)-center, (3rd DP-, DP+)-center) . For crossing-quadratic and crossing-cubic systems, in addition to the first and third-order saddles and centers plus parabola-saddles, there are (3:2)parabola-saddle and double-inflection saddles, and for the two crossing-cubic systems, (3:3)-saddles and centers exist. Finally, the homoclinic orbits with centers can be formed, and the corresponding homoclinic networks of centers and saddles exist. Readers will learn new concepts, theory, phenomena, and analytic techniques, including · Constant and crossing-cubic systems · Crossing-linear and crossing-cubic systems · Crossing-quadratic and crossing-cubic systems · Crossing-cubic and crossing-cubic systems · Appearing and switching bifurcations · Third-order centers and saddles · Parabola-saddles and inflection-saddles · Homoclinic-orbit network with centers · Appearing bifurcations Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems; Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles; Develops homoclinic networks of source, sink and saddles. 606 $aPlasma waves 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aDynamics 606 $aNonlinear theories 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aWaves, instabilities and nonlinear plasma dynamics 606 $aMultibody Systems and Mechanical Vibrations 606 $aApplied Dynamical Systems 606 $aMathematical and Computational Engineering Applications 615 0$aPlasma waves. 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 14$aWaves, instabilities and nonlinear plasma dynamics. 615 24$aMultibody Systems and Mechanical Vibrations. 615 24$aApplied Dynamical Systems. 615 24$aMathematical and Computational Engineering Applications. 676 $a530.44 700 $aLuo$b Albert C. J$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910978380703321 996 $aTwo-Dimensional Crossing-Variable Cubic Nonlinear Systems$94323204 997 $aUNINA