LEADER 01210nam a2200289 i 4500 001 991002474249707536 005 20020503165728.0 008 010104s1984 fr ||| | fre 020 $a2251662367 020 $a2251672362 035 $ab10369909-39ule_inst 035 $aEXGIL104501$9ExL 040 $aBiblioteca Interfacoltà$bita 082 0 $a447.94934 100 1 $aRemacle, Louis$0199929 245 13$aLa différenciation des géminées mm, nn en mb, nd :$bsur l'étymologie des termes landon et flamber et des toponymes hambê, hambâ /$cLouis Remacle 260 $aParis :$bLes belles lettres,$c1984 300 $a215, 9 p. :$bill. ;$c24 cm. 490 0 $aBibliothèque de la Faculté de philosophie et lettres de l'Université de Liège ;$vfasc. 236 650 4$aLingua francese antica - Consonanti 650 4$aLingua francese antica - Etimologia 907 $a.b10369909$b21-02-17$c27-06-02 912 $a991002474249707536 945 $aLE002 Fr. VII F 36$g1$i2002000969125$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10432528$z27-06-02 996 $aDifférenciation des géminées mm, nn en mb, nd$9139198 997 $aUNISALENTO 998 $ale002$b01-01-01$cm$da $e-$ffre$gfr $h3$i1 LEADER 05117oam 2200529 450 001 9910821732003321 005 20170523091545.0 010 $a0-08-098226-3 035 $a(OCoLC)847141234 035 $a(MiFhGG)GVRL8DMB 035 $a(EXLCZ)992660000000011325 100 $a20140610d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aSulfuric acid manufacture $eanalysis, control, and optimization /$fby Matthew J. King, Perth, Western Australia, William G. Davenport, Tucson, Arizona, Michael S. Moats, Rolla, Missouri 205 $a2nd ed. 210 $aSan Diego, Calif. $cElsevier$dc2013 210 1$aBurlington, MA :$cElsevier,$d2013. 215 $a1 online resource (xvi, 511 pages) $cillustrations (some color), map 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a0-08-098220-4 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Sulfuric Acid Manufacture: Analysis, Control, and Optimization; Copyright; Contents; Preface; Chapter 1: Overview; 1.1. Catalytic oxidation of SO2 to SO3; 1.1.1. Catalyst; 1.1.2. Feed gas drying; 1.2. H2SO4 production; 1.3. Industrial flowsheet; 1.4. Sulfur burning; 1.5. Metallurgical offgas; 1.6. Spent acid regeneration; 1.7. Sulfuric acid product; 1.8. Recent developments; 1.9. Alternative processes; 1.9.1. Wet gas sulfuric acid; 1.9.2. Sulfacid®; 1.10. Summary; References; Suggested reading; Chapter 2: Production and consumption; 2.1. Uses; 2.2. Acid plant locations 327 $a2.3. Price2.4. Summary; References; Suggested reading; Chapter 3: Sulfur burning; 3.1. Objectives; 3.2. Sulfur; 3.2.1. Viscosity; 3.3. Molten sulfur delivery; 3.3.1. Sulfur pumps and pipes; 3.4. Sulfur atomizers and sulfur burning furnaces; 3.4.1. Sulfur atomizers; 3.4.2. Dried air supply; 3.4.3. Main blower; 3.4.4. Furnace; 3.5. Product gas; 3.5.1. Gas destination; 3.5.2. Composition and temperature control; 3.5.3. Target gas composition; 3.5.4. Target gas temperature; 3.6. Heat recovery boiler; 3.7. Summary; References; Suggested reading; Chapter 4: Metallurgical offgas cooling and cleaning 327 $a4.1. Initial and final SO2 concentrations4.2. Initial and final dust concentrations; 4.3. Offgas cooling and heat recovery; 4.4. Electrostatic collection of dust; 4.5. Water scrubbing (Tables4.5 and 4.6); 4.5.1. Gas temperature after scrubbing; 4.5.2. Impure scrubbing liquid; 4.5.3. Mercury removal (Outotec, 2011; Schlesinger et al., 2011); 4.5.4. Fluorine removal; 4.6. H2O(g) removal from scrubber exit gas (Tables4.5 and 4.6); 4.7. Summary; References; Suggested reading; Chapter 5: Regeneration of spent sulfuric acid; 5.1. Spent acid compositions; 5.2. Spent acid handling 327 $a5.3. Decomposition5.3.1. Other reactions; 5.3.2. Spent acid spraying; 5.4. Decomposition furnace product; 5.5. Optimum decomposition furnace operating conditions; 5.5.1. Temperature effects; 5.5.2. O2 content effects; 5.6. Preparation of offgas for SO2 oxidation and H2SO4 making; 5.6.1. Gas composition; 5.7. Summary; References; Suggested Reading; Chapter 6: Dehydrating air and gases with strong sulfuric acid; 6.1. Chapter objectives; 6.1.1. H2O(g) before gas dehydration; 6.2. Dehydration with strong sulfuric acid; 6.2.1. H2O(g) concentration after gas dehydration 327 $a6.2.2. Choice of dehydration acid strength6.3. Dehydration reaction mechanism; 6.3.1. Maximizing dehydration rate; 6.4. Residence times; 6.5. Recent advances; 6.6. Summary; References; Chapter 7: Catalytic oxidation of SO2 to SO3*; 7.1. Objectives; 7.2. Industrial SO2 oxidation; 7.2.1. Source of O2; 7.3. Catalyst necessity; 7.3.1. Temperature effect; 7.4. SO2 oxidation ``heatup ? ? path (Chapter 11); 7.5. Industrial multicatalyst bed SO2 oxidation (Tables 7.2-7.7); 7.5.1. Overall multicatalyst bed results; 7.5.2. Double contact acidmaking; 7.6. Industrial operation (Table7.2); 7.6.1. Startup 327 $a7.6.2. Steady operation 330 $aBy some measure the most widely produced chemical in the world today, sulfuric acid has an extraordinary range of modern uses, including phosphate fertilizer production, explosives, glue, wood preservative and lead-acid batteries. An exceptionally corrosive and dangerous acid, production of sulfuric acid requires stringent adherence to environmental regulatory guidance within cost-efficient standards of production. This work provides an experience-based review of how sulfuric acid plants work, how they should be designed and how they should be operated for maximum sulfur capture and 606 $aSulfuric acid 606 $aSulfuric acid industry 615 0$aSulfuric acid. 615 0$aSulfuric acid industry. 676 $a661/.22 700 $aKing$b Matthew J$0297418 702 $aDavenport$b W. G$g(William George), 702 $aMoats$b Michael S. 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910821732003321 996 $aSulfuric acid manufacture$94125330 997 $aUNINA